Advertisement

Water, Air, and Soil Pollution

, Volume 194, Issue 1–4, pp 91–110 | Cite as

Assessing Urban Impacts on Water Quality, Benthic Communities and Fish in Streams of the Andes Mountains, Patagonia (Argentina)

  • M. L. Miserendino
  • C. Brand
  • C. Y. Di Prinzio
Article

Abstract

Communities of aquatic macroinvertebrates, fish density and biomass, and environmental variables were investigated in three Patagonian mountain rivers affected by urbanization. The rivers Las Minas, Esquel and Carbón that flow through the towns of Cholila, Esquel and Corcovado, respectively (northwest Chubut, Argentina) were selected to assess the degree of impairment. A reference site and an urban site were established on each river. Water quality variables including conductivity, major nutrients, total suspended solids (TSS) and dissolved oxygen, habitat conditions and quality of riparian ecosystems were investigated in autumn, winter, spring and summer 2005–2006. Macroinvertebrates were sampled concurrently in three riffles and three pools at each site. Invertebrate species richness, EPT richness, the Shannon–Weaver diversity index, % EPT density, and the BMPS index were lower at urban sites, whereas % collectors increased. The most impaired site was below Esquel, the largest town. Senzilloides panguipulli (Plecoptera), Polypedilum and Rheotanytarsus species (Diptera: Chironomidae), Nais communis (Oligochaeta) and Meridialaris chiloeensis (Ephemeroptera) dominated assemblages at reference and moderately impaired sites in summer, whereas the strongly polluted reach below Esquel had low flow in summer and a community dominated by Limnodrilus spp. (Oligochaeta), Helobdella spp. (Hirudinea), and two Hyallela species (Amphipoda). Canonical correspondence analysis indicated that ammonia, conductivity and TSS were important variables structuring invertebrate assemblages. In contrast, fish density and biomass varied in a non-systematic manner among sites. Overall, urbanization resulted in varying degrees of habitat degradation, sedimentation and nutrient enrichment that were reflected by the macroinvertebrate assemblages, which can be used effectively to monitor the effects of urban communities on Patagonian mountain streams.

Keywords

Environmental relationships Invertebrates Nutrients Pollution Rivers 

Notes

Acknowledgments

This study was supported by CONICET (PIP 5733) and Project A.W.A.R.E. Foundation (P-001036) and PADI Foundation (19/2006). Special thanks to Carolina Masi and Ricardo Casaux for fieldtrip assistance. We wish to thank Mike Winterbourn for thoughtful reviews of the manuscript and for constructive suggestions for its improvement. Thanks to anonymous reviewers for valuable comments that greatly improved the manuscript. This is Scientific Contribution n° 31 from LIESA.

References

  1. Albariño, R. J., & Balseiro, E. (2002). Leaf litter breakdown in Patagonian streams: Native versus exotic trees and the effect of invertebrate size. Aquatic Conservation Marine and Freshwater Ecosystem, 12, 181–192.CrossRefGoogle Scholar
  2. Allan, D. J. (1995). Stream ecology. Structure and function of running waters. London: Chapman & Hall.Google Scholar
  3. Angrisano, E. B. (1995). Insecta Trichoptera. In E. C. Lopretto, & G. Tell (Eds.), Ecosistemas de aguas continentales (pp. 1199–1242). La Plata: Ed. Hemisferio Sur.Google Scholar
  4. APHA (1994). Standard Methods for the examination of water and wastewater. Hanover, Maryland, USA: American Public Health Association.Google Scholar
  5. Armitage, P. D., Moss, D., Wright, J. F., & Furse, M. T. (1983). The performance of a new biological water quality score system based on macroinvertebrates over a range of unpolluted running water sites. Water Resources, 17, 333–347.Google Scholar
  6. Arocena, R. (1998). Statistical analysis of benthic communities to assess suspected degradation and recuperation zones in an urban stream (Uruguay). Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte der Limnologie, 26, 1188–1192.Google Scholar
  7. Barbour, M. T., Gerritsen, J., Griffith, G. E., Frydenborg, R., McCarron, E., White, J. S., et al. (1996). A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of the North American Benthological Society, 15, 185–211.CrossRefGoogle Scholar
  8. Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid Bioassessment Protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish, 2nd ed. US Environmental Protection Agency, Washington, DC. EPA. 841-b-99-002.Google Scholar
  9. Blakely, T. J., & Harding, J. (2005). Longitudinal patterns in benthic communities in an urban stream under restoration. New Zealand Journal of Marine and Freshwater Research, 39, 17–28.Google Scholar
  10. Chessman, B. C. (1995). Rapid assessment of rivers using macroinvertebrates: A procedure based on habitat-specific sampling, family level identification and a biotic index. Australian Journal of Ecology, 20, 122–129.CrossRefGoogle Scholar
  11. Collier, K. J., Smith, B. J., Quinn, J. M., Scarsbrook, M. R., Halliday, N. J., Croker, G. F., et al. (2000). Biodiversity of stream invertebrate faunas in a Waikato hill-country catchment in relation to land use. New Zealand Entomologist, 23, 9–22.Google Scholar
  12. Coronato, F. R., & del Valle, H. F. (1988). Caracterización hídrica de las cuencas hidrográficas de la provincia del Chubut. Cenpat-Conicet, Puerto Madryn, Chubut, Argentina: Publicación Técnica.Google Scholar
  13. Cummins, K. W., Minshall, G. W., Sedell, J. R., Cushing, C. E., & Petersen, R. C. (1984). Stream ecosystem theory. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie, 22, 1819–1827.Google Scholar
  14. Death, R. G. (1995). Spatial patterns in benthic invertebrate community structure: Products of habitat stability or are they habitat specific? Freshwater Biology, 33, 455–467.CrossRefGoogle Scholar
  15. Domínguez, E., & Fernández, H. R. (1998). Calidad de los ríos de la cuenca del Salí (Tucumán Argentina) medida por un índice biótico. Serie conservación de la naturaleza. Tomo II. Fundación Miguel Lillo Tucumán. Universidad Nacional de Tucumán.Google Scholar
  16. Domínguez, E., Hubbard, M. D., & Pescador, M. L. (1994). Los Ephemeroptera de Argentina. Fauna de Agua Dulce de la Rca Argentina.Vol. 33.Google Scholar
  17. Fernández, H. R., & Domínguez, E. (2001). Guía para la determinación de los Artrópodos bentónicos sudamericanos. Tucumán, Argentina: EUDET.Google Scholar
  18. Figueroa, R., Valdovinos, C., Araya, E., & Parra, O. (2003). Macroinvertebrados bentónicos como indicadores de calidad de agua de ríos del sur de Chile. Revista Chilena de Historia Natural, 76, 275–285.Google Scholar
  19. Finkenbine, J. F., Atwater, D. S., & Mavinic, D. S. (2000). Stream health alters urbanization. Journal of the American Water Resources Association, 36, 1149–1160.CrossRefGoogle Scholar
  20. Giorgi, A., & Malacalza, L. (2002). Effect of an industrial discharge on water quality and periphyton structure in a Pampean stream. Environmental Monitoring and Assessment, 75, 107–119.CrossRefGoogle Scholar
  21. Gordon, N. D., McMahon, T. A., & Finlayson, B. L. (1994). Stream hydrology, an introduction for ecologists. New York: Wiley.Google Scholar
  22. Gualdoni, C. M., Oberto, A. M., & Raffaini, G. B. (1994). Evaluación de la calidad biológica de los ambientes lóticos de la subcuenca del Río Ctalamotchita (Tercero) (Córdoba, Argentina). Revista de la Universidad Nacional de Río Cuarto, 14, 65–80.Google Scholar
  23. Hall, M. J., Closs, P., & Riley, R. H. (2001). Relationships between land use and stream invertebrate community structure in South Island, New Zealand, coastal stream catchment. New Zealand Journal of Marine and Freshwater Research, 35, 591–603.Google Scholar
  24. Hicham, K., & Lotfi, A. (2007). The dynamics of macroinvertebrate assemblages on response to environmental change in four basins of the Etueffont landfill leachate (Belfort, France). Water, Air and soil pollution, 185, 3–9.CrossRefGoogle Scholar
  25. Jergentz, S., Pessacq, P., Mugni, H., Bonetto, C., & Schulz, R. (2004). Linking in situ bioassays and population dynamics of macroinvertebrates to assess agricultural contamination in streams of Argentine pampa. Ecotoxicology and Environmental Safety, 59, 133–141.CrossRefGoogle Scholar
  26. Kutschker, A.M., Brand, C., & Masi, C. (2006). La calidad de los bosques de ribera en ríos cordilleranos sometidos a distintos usos de la tierra. XXII Reunión Argentina de Ecología. Libro de resúmenes: 164. Agosto. Córdoba. Argentina.Google Scholar
  27. Ludwig, J. A., & Reynolds, J. F. (1988). Statistical ecology. New York: Wiley-Interscience.Google Scholar
  28. Marchesse, E. B. (1995). Oligochaeta. In E. C. Lopretto, & G. Tell (Eds.), Ecosistemas de aguas continentales (pp. 709–728). La Plata: Ed. Hemisferio Sur.Google Scholar
  29. Mason, C. F. (1991). Biology of freshwater pollution. New York: Longman Scientific and Technical.Google Scholar
  30. Merritt, R. W., & Cummins, K. W. (1996). An introduction to the aquatic insects of North America. Dubuque, Iowa: Kendall-Hunt.Google Scholar
  31. Meyer, J. L., Paul, M. J., & Taulbee, W. K. (2005). Stream ecosystem function in urbanizing landscapes. Journal of North American Benthological Society, 24, 602–612.Google Scholar
  32. Miserendino, M. L. (1995). Composición y distribución del macrozoobentos en un arroyo andino. Ecologia Austral, 5, 133–142.Google Scholar
  33. Miserendino, M. L. (2001). Macroinvertebrate assemblages in Andean Patagonian rivers and streams. Hydrobiologia, 444, 147–158.CrossRefGoogle Scholar
  34. Miserendino, M. L. (2004). Effects of landscape and desertification on the macroinvertebrate assemblages of rivers in Andean Patagonia. Archiv für Hydrobiologie, 159, 185–209.CrossRefGoogle Scholar
  35. Miserendino, M. L. (2007). Macroinvertebrate functional organization and water quality in a large arid river from Patagonia (Argentina). Annales de Limnologie, 43(3), 133–145.Google Scholar
  36. Miserendino, M. L., & Pizzolón, L. A. (1992). Un índice biótico de calidad de aguas corrientes para la región andino-patagónica. pp. 39–40. Resúmenes del Segundo Congreso Latinoamericano de Ecología. Caxambú, Minas Gerais, Brasil.Google Scholar
  37. Miserendino, M. L., & Pizzolón, L. A. (1999). Rapid assessment of river water quality using macroinvertebrates: A family level biotic index for the Patagonic Andean zone. Acta Limnologica Brasiliensia, 11, 137–148.Google Scholar
  38. Miserendino, M. L., & Pizzolón, L. A. (2000). Macroinvertebrates of a fluvial system in Patagonia: Altitudinal zonation and functional structure. Archiv für Hydrobiologie, 150, 55–83.Google Scholar
  39. Miserendino, M. L., & Pizzolón, L. A. (2003). Distribution of macroinvertebrates assemblages in the Azul-Quemquemtreu river basin, Patagonia, Argentina. New Zealand Journal of Marine and Freshwater Research, 37, 525–539.Google Scholar
  40. Miserendino, M. L., & Pizzolón, L. A. (2004). Interactive effects of basin features and land-use change on macroinvertebrate communities of headwater streams in the Patagonian Andes. River Research & Applications, 20, 967–983.CrossRefGoogle Scholar
  41. Monaghan, K. A., Peck, M. R., Brewin, P. A., Masiero, M., Zarate, E., Turcotte, P., et al. (2000). Macroinvertebrate distribution in Ecuadorian hill streams: The effects of altitude and land use. Archiv für Hydrobiologie, 149, 421–440.Google Scholar
  42. Morgan, R. P., & Cushman, S. F. (2005). Urbanization effects on stream fish assemblages in Maryland, USA. Journal of the North American Benthological Society, 24, 643–665.Google Scholar
  43. Morrone, J. J., & Coscaron, S. (1998). Biodiversidad de artrópodos argentinos: Una perspectiva biotaxonómica. La Plata, Argentina: Ediciones Sur.Google Scholar
  44. Munné, A., Solá, C., & Prat, N. (1998). QBR: Un índice rápido para la evaluación de la calidad de los ecosistemas de ribera. Tecnología del agua, 175, 20–37.Google Scholar
  45. Nolan, P. A., & Guthrie, N. (1998). River rehabilitation in an urban environment: Examples from the Mersey basin, North West England. Aquatic Conservation: Marine and Freshwater Ecosystems, 8, 685–700.CrossRefGoogle Scholar
  46. Onorato, D., Angus, R. A., & Marion, K. R. (2000). Historical changes in the ichthyofaunal assemblages of the Upper Cahaba River in Alabama associated with extensive urban development in the watershed. Journal of Freshwater Ecology, 15, 47–63.Google Scholar
  47. Ortiz, J. D., & Puig, M. A. (2007). Point source effects on density, biomass and diversity of benthic macroinvertebrates in a Mediterranean stream. River Research and Applications, 23, 155–170.CrossRefGoogle Scholar
  48. Paggi, A. (1999). Los Chironominae como indicadores de calidad de ambientes dulceacuícolas. Revista de la Sociedad Entomológica Argentina, 58, 202–207.Google Scholar
  49. Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 333–365.CrossRefGoogle Scholar
  50. Pavé, P. J., & Marchesse, M. (2005). Invertebrados bentónicos como indicadores de la calidad del agua en ríos urbanos (Paraná-Entre ríos, Argentina). Ecología Austral, 15, 183–197.Google Scholar
  51. Prat, N. (1997). La problemática de la conservación de los ríos españoles como ecosistemas. Ecosistemas, 20/21, 42–47.Google Scholar
  52. Prat, N., Munné, A., Solá, C., Bonada, N., & Rieradevall, M. (1999). Perspectivas en la utilización de los insectos acuáticos como bioindicadores del estado ecológico de los ríos. Aplicación a los ríos mediterráneos. Revista de la Sociedad Entomológica Argentina, 58, 181–192.Google Scholar
  53. Pizzolón, L., Miserendino, M. L., & Arias, L. (1997). Impacto de las descargas cloacales de Cholila sobre el arroyo Las Minas. Ingeniería Sanitaria y Ambiental, 31, 56–58.Google Scholar
  54. Quinn, J. M., Cooper, A. B., Davies-Collier, R. J., Rutherford, J. C., & Williamson, R. B. (1997). Land use effects on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand, hill-country streams. New Zealand Journal of Marine and Freshwater Research, 31, 579:597.Google Scholar
  55. Rosenberg, D. M., & Resh, V. H. (1993). Freshwater biomonitoring and benthic invertebrates. New York: Chapman & Hall.Google Scholar
  56. Scott, J. B., Steward, C. R., & Stober, Q. J. (1986). Effects of urban development on fish population dynamics in Kelsey Creek, Washington. Transactions of the American Fisheries Society, 115, 555–567.CrossRefGoogle Scholar
  57. Shieh, S. H., Ward, J. V., & Kondratieff, B. C. (2003). Longitudinal changes in macroinvertebrate production in a stream affected by urban and agricultural activities. Archiv für Hydrobiologie, 157, 483–503.CrossRefGoogle Scholar
  58. Silveira, M. P., Baptista, D. F., Buss, D. F., Nessimian, N. L., & Egler, M. (2005). Application of biological measures for stream integrity assessment in South-east Brazil. Environmental Monitoring and Assessment, 101, 117–128.Google Scholar
  59. Sokal, R. R., & Rohlf, F. J. (1995). Biometry (3rd ed.). New York: Freeman.Google Scholar
  60. Suren, A. M. (2000). Effects of urbanization. In K. J. Collier, & M. J. Winterbourn (Eds.), New Zealand invertebrates: Ecology and implications for management (pp. 260–268). Christchurch New Zealand: New Zealand Limnological Society.Google Scholar
  61. ter Braak, C. J. F. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.CrossRefGoogle Scholar
  62. ter Braak, C. J. F., & Smilauer, P. (1998). CANOCO Reference manual and user’s guide to Canoco for Windows. Software for Canonical Community Ordination (version 4). Microcomputer power. Ithaca, NY.Google Scholar
  63. ter Braak, C. J. F., & Smilauer, P. (1999). CANOCO for Windows (version 4.02). A FORTRAN program for canonical community ordination. Wageningen, The Netherlands: Centre for Biometry Wageningen.Google Scholar
  64. Vallania, A., & Corigliano, M. d. C. (2007). The effect of regulation caused by a dam on the distribution of the functional feeding groups of the benthos in the sub basin of the Grande river (San Luis, Argentina). Environmental Monitoring Assessment, 124, 201–209.CrossRefGoogle Scholar
  65. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.CrossRefGoogle Scholar
  66. Ward, J. W. (1992). Aquatic insect ecology. New York: Wiley.Google Scholar
  67. Wilcock, R. J., Nagels, J. W., & Rodda, H. J. E. (1999). Water quality of a lowland stream in a New Zealand dairy farming catchment. New Zealand Journal of Marine and Freshwater Research, 33, 683–696.CrossRefGoogle Scholar
  68. Winter, J. G., & Duthie, H. C. (1998). Effects of urbanization on water quality, periphyton and invertebrate communities in a Southern Ontario Stream. Canadian Water Resources Journal, 23, 245–257.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. L. Miserendino
    • 1
  • C. Brand
    • 1
  • C. Y. Di Prinzio
    • 1
  1. 1.Laboratorio de Investigaciones en Ecología y Sistemática Animal (LIESA)Universidad Nacional de la PatagoniaEsquelArgentina

Personalised recommendations