Water, Air, and Soil Pollution

, Volume 193, Issue 1–4, pp 131–146 | Cite as

Kinetic Speciation of Ni(II) in Model Solutions and Freshwaters: Competition of Al(III) and Fe(III)

  • Nouri Hassan
  • John D. Murimboh
  • Chuni L. Chakrabarti
Article

Abstract

The competing ligand exchange method was used to investigate the competitive binding of Ni(II) by Al(III) and Fe(III) in model aqueous solutions and freshwaters. Graphite furnace atomic absorption spectrometry and adsorptive cathodic stripping voltammetry were used to monitor the rate of uptake of the Ni by Chelex 100 chelating resin and dimethylglyoxime as the competing ligands, respectively. The results have revealed that Ni(II)–humate complexes were more labile in presence of the mixture of Al(III) and Fe(III), compared to the lability of the Ni(II)–humate complexes when only one of the two, Al(III) or Fe(III), was present. The environmental significance of this work is that in model solutions simulating freshwater containing humic substances and the target trace metal Ni(II) and cations, Al(III) and Fe(III), the competitive binding of Ni(II), Al(III) and Fe(III) by humic substances makes Ni(II)–humate complexes labile, releasing free Ni2+–aqua complex, which reported to be toxic.

Keywords

Competition Kinetics Nickel Iron Aluminium Freshwaters 

Notes

Acknowledgements

The authors are grateful to the Nickel Producers Environmental Research Association, USA, Inco Ltd., and Falconbridge Ltd., Canada, for three research contracts, and to the Natural Sciences and Engineering Research Council of Canada, for a research grant, the Metals in the Environment-Research Network, Ontario Power Generation Inc., and the Mining Association of Canada for a research grant. N.M. Hassan is grateful to the Government of Libya for a postgraduate scholarship.

References

  1. Bolt, G. H., Bruggenwert, M. G., & Kamphorst, A. (1987). Adsorption of cations in soil. In G. H. Bolt, & M. G. Bruggenwert (Eds.) Soil chemistry, basic elements (pp. 105–121). Amsterdam: Elsevier.Google Scholar
  2. Borggaard, O. K., Raben-Lange, B., Gimsing, A. L., & Strobel, B. W. (2005). Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma, 127, 270–279.CrossRefGoogle Scholar
  3. Buffle, J. (1990). Complexation reactions in aquatic systems: An analytical approach (pp. 72–75). Chichester: Ellis Horwood Ltd.Google Scholar
  4. Crichton, R. R. (1991). Inorganic biochemistry of Iron metabolism (pp. 1–263). Chichester: Ellis Horwood.Google Scholar
  5. Driscoll, C. T., Baker, J. P., Bisogni, J. J., & Schofield, C. L. (1980). Effect of aluminium speciation on fish in dilute acidified waters. Nature, 284, 161–164.CrossRefGoogle Scholar
  6. Evangelou, V. P. (1998). Environmental soil and water chemistry principles and applications (p. 485). New York: Wiley.Google Scholar
  7. Hassan, N. M., Murimboh, J. D., Sekaly, A. L. R., Mandal, R., Chakrabarti, C. L., & Grégoire, D. C. (2006). Cascade ultrafiltration and competing ligand exchange for kinetic speciation of aluminium, iron, and nickel in fresh water. Analytical Bioanalytical Chemistry, 384, 1558–1566.CrossRefGoogle Scholar
  8. Jeon, B., Dempsey, B. A., Burgos, W. D., & Royer, R. A. (2003). Sorption kinetics of Fe(II), Zn(II), Co(II), Ni(II), Cd(II), and Fe(II)/Me(II) onto hematite. Water Research, 37, 4135–4142.CrossRefGoogle Scholar
  9. Lam, M. T., Murimboh, J. D., Hassan, N. M., & Chakrabarti, C. L. (1999). Competitive ligand exchange/adsorptive cathodic stripping voltammetry (CLE/AdCSV) for kinetic studies of nickel speciation in aqueous environmental samples containing heterogeneous, macromolecular, organic complexants. Analytica Chimica Acta, 402, 195–209.CrossRefGoogle Scholar
  10. Langford, C. H., & Gutzman, W. (1992). Kinetic studies of metal ion speciation. Analytica Chimica Acta, 256, 183–201.CrossRefGoogle Scholar
  11. Lavigne, J. A., Langford, C. H., & Mak, M. R. S. (1987). Kinetic study of speciation of nickel(II) bound to a fulvic acid. Analytical Chemistry, 59, 2616–2620.CrossRefGoogle Scholar
  12. Mandal, R., Sekaly, A. L. R., Murimboh, J., Hassan, N. M., Chakrabarti, C. L., Back, M., et al. (1999a). Effect of the competition of copper and cobalt on the lability of Ni(II)-organic ligand complexes. Part I. In model solutions containing Ni(II) and a well-characterized fulvic acid. Analytica Chimica Acta, 395, 309–322.CrossRefGoogle Scholar
  13. Mandal, R., Sekaly, A. L. R., Murimboh, J., Hassan, N. M., Chakrabarti, C. L., Back, M. H., et al. (1999b). Effect of the competition of copper and cobalt on the lability of Ni(II)-organic ligand complexes, Part II: in freshwaters (Rideau River surface waters). Analytica Chimica Acta, 395, 323–334.CrossRefGoogle Scholar
  14. Mandal, R., Salam, M. S. A., Murimboh, J., Hassan, N. M., Chakrbarti, C. L., Back, M. H., et al. (2000). Competition of Ca(II) and Mg(II) with Ni(II) for binding by a well-characterized fulvic acid in model solutions. Environmental Science and Technology, 34, 2201–2208.CrossRefGoogle Scholar
  15. Mandal, R., Hassan, N. M., Murimboh, J., Chakrbarti, C. L., Back, M. H., Rahayu, U., et al. (2002). Chemical speciation and toxicity of nickel species in natural waters from the Sudbury Area (Canada). Environmental Science and Technology, 36, 1477–1484.CrossRefGoogle Scholar
  16. Marquardt, D. W. J. (1963). An algorithm for least-squares estimation of nonlinear parameters. Society for Industrial and Applied Mathematics, 11, 431–441.CrossRefGoogle Scholar
  17. Morel, F. M. M., & Hering, J. G. (1994). Principles and applications of aquatic chemistry (pp. 375, 398–403). New York: Wiley.Google Scholar
  18. Mota, A. M., Rato, A., Brazia, C., & Gonçalves, M. S. (1996). Competition of Al3+ in complexation of humic matter with Pb2+: A comparative study with other ions. Environmental Science and Technology, 30, 1970–1974.CrossRefGoogle Scholar
  19. Nachtegaal, M., Scheidegger, A. M., Dähn, R., Chateigner, D., & Furrer, G. (2005). Immobilization of Ni by Al-modified montmorillonite: A novel uptake mechanism. Geochimica et Cosmochimica Acta, 69, 4211–4225.CrossRefGoogle Scholar
  20. Nierop, K. G. J., Jansen, B., & Verstraten, J. M. (2002). Dissolved organic matter, aluminium and iron interactions: precipitation induced by metal/carbon ratio, pH and competition. Science of the Total Environment, 300, 201–211.CrossRefGoogle Scholar
  21. Pinheiro, J. P., Mota, A. M., & Benedtti, M. F. (2000). Effect of aluminum competition on lead and cadmium binding to humic acids at variable ionic strength. Environmental Science and Technology, 34, 5137–5143.CrossRefGoogle Scholar
  22. Ponthieu, M., Juillot, F., van Riemsdijk, W. H., & Benedetti, M. F. (2006). Metal ion binding to iron oxides. Geochimica et Cosmochimica Acta, 70, 2679–2698.CrossRefGoogle Scholar
  23. Ross, J. M., & Sherrell, R. M. (1999). The role of colloids in trace metal transport and adsorption behavior in New Jersey Pinelands streams. Limnology Oceanography, 44, 1019–1034.CrossRefGoogle Scholar
  24. Sekaly, A. L. R., Back, M. H., Chakrabarti, C. L., Grégoire, D. C., Lu, J. Y., & Schroeder, W. H. (1998a). Measurements and analysis of dissociation rate constants of metal–fulvic acid complexes in aqueous solutions Part I: Simulation of decay curves obtained by inductively coupled plasma-mass spectrometry to evaluate a method to measure the distribution of first-order rate constants. Spectrochim Acta, 53B, 837–846.Google Scholar
  25. Sekaly, A. L. R., Back, M. H., Chakrabarti, C. L., Grégoire, D. C., Lu, J. Y., & Schroeder, W. H. (1998b). Measurements and analysis of dissociation rate constants of metal–fulvic acid complexes in aqueous solutions Part II: Measurement of decay rates by inductively coupled plasma-mass spectrometry and determination of rate constants for dissociation. Spectrochim Acta, 53B, 847–858.Google Scholar
  26. Sigel, H., & Sigel, A. (1988). Metal in biological systems, Vol. 24 (p. 4). New York: Marcel Dekker.Google Scholar
  27. Skyllberg, U. (1999). pH and solubility of aluminium in acidic forest soils: a consequence of reactions between organic acidity and aluminium alkalinity. European Journal of Soil Science, 50, 95–106.CrossRefGoogle Scholar
  28. Tipping, E. (2005). Modelling Al competition for heavy metal binding by dissolved organic matter in soil and surface waters of acid and neutral pH. Geoderma, 127, 293–304.CrossRefGoogle Scholar
  29. Tipping, E., Berggren, D., Mulder, J., & Woof, C. (1995). Modelling the solid–solution distributions of protons, aluminium, base cations and humic substances in acid soils. European Journal of Soil Science, 46, 77–94.CrossRefGoogle Scholar
  30. Tipping, E., Rey-Castro, C., Bryan, S. E., & Hamilton-Taylor, J. (2002). Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochimica et Cosmochimica Acta, 66, 3211–3224.CrossRefGoogle Scholar
  31. Van den Hoop, M. A. G. T., Van Leeuwen, H. P., Pinheiro, J. P., Mota, A. M., & Gonçalves, M. S. (1995). Voltammetric analysis of the competition between calcium and heavy metals for complexation by humic material. Colloids and Surfaces A, 95, 305–313.CrossRefGoogle Scholar
  32. Wild, A. (1993). Soils and the environment an introduction (p. 280). Cambridge: Cambridge University Press.Google Scholar
  33. Xu, Y., Axe, L., Yee, N., & Dyer, J. A. (2006). Bidentate complexation modeling of heavy metal adsorption and competition on Goethite. Environmental Science and Technology, 40, 2213–2218.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Nouri Hassan
    • 1
    • 2
  • John D. Murimboh
    • 3
  • Chuni L. Chakrabarti
    • 1
  1. 1.Department of ChemistryCarleton UniversityOttawaCanada
  2. 2.Worsfold Water Quality CentreTrent UniversityPeterboroughCanada
  3. 3.Department of ChemistryAcadia UniversityWolfvilleCanada

Personalised recommendations