Water, Air, and Soil Pollution

, Volume 192, Issue 1–4, pp 337–348

Enhanced Adsorption of Metal Ions Onto Polyethyleneimine-Impregnated Palm Shell Activated Carbon: Equilibrium Studies

  • Chun Yang Yin
  • Mohamed Kheireddine Aroua
  • Wan Mohd Ashri Wan Daud


In this study, palm shell activated carbon was impregnated with polyethyleneimine (PEI) and the effect of impregnation on batch adsorption of Ni2+, Cd2+or Pb2+ as well as the equilibrium behavior of adsorption of metal ions on PEI-impregnated AC were investigated. PEI impregnation evidently increased the single metal adsorption capacities of Ni2+ or Cd2+except for Pb2+, where its adsorption capacities were reduced by 16.67% and 19.55% for initial solution pH of 3 and 5 respectively. This suggested that PEI-impregnated AC could be used for selective separation of Pb2+ ions from other metal ions. The adsorption data of all the metal ions on both virgin and PEI-impregnated AC for both initial solution pH of 3 and 5 generally fitted the Langmuir and Redlich-Peterson isotherms considerably better than the Freundlich isotherm.


Adsorption Isotherms Metal ions Palm shell activated carbon Polyethyleneimine 



Redlich–Peterson constant


Redlich–Peterson constant


equilibrium concentration, mg/l


initial concentration, mg/l


Redlich–Peterson constant


Langmuir constant.


Freundlich constant


weight of AC, g.


pH of point of zero charge


equilibrium adsorption capacity, mg/g.


Freundlich constant


adsorbate adsorbed per unit mass of adsorbent (monolayer adsorption), mg/g.


correlation coefficient


volume, l.


  1. Ali, U. F. M., Aroua, M. K., & Daud, W. M. A. W. (2004). Modification of a granular palm shell based activated carbon by acid pre-treatment for enhancement of copper adsorption. Paper presented at the Third Technical Postgraduate Symposium, Kuala Lumpur, Malaysia, December.Google Scholar
  2. Brown, P., Jefcoat, I. A., Parrish, D., Gill, S., & Graham, E. (2000). Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Advances in Environmental Science, 4, 19–29.CrossRefGoogle Scholar
  3. Chingombe, P., Saha, B., & Wakeman, R. J. (2006). Effect of surface modification of an engineered activated carbon on the sorption of 2,4-dichlorophenoxy acetic acid and benazolin from water. Journal of Colloid and Interface Science, 297, 434–442.CrossRefGoogle Scholar
  4. Dastgheib, S. A., & Rockstraw, D. A. (2002). A model for the adsorption of single metal ion solutes in aqueous solution onto activated carbon produced from pecan shells. Carbon, 40, 1843–1851.CrossRefGoogle Scholar
  5. Daud, W. M. A. W., Ali, W. S. W., & Sulaiman, M. Z. (2002). Effect of activation temperature on pore development in activated carbon produced from palm shell. Journal of Chemical Technology and Biotechnology, 78, 1–5.CrossRefGoogle Scholar
  6. Demirbas, E., Kobya, M., Öncel, S., & Sencan, S. (2002). Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies. Bioresource Technology, 84, 291–293.CrossRefGoogle Scholar
  7. Department of Environment (DOE) (2002). Malaysian environmental quality report. ISSN 0127-6433.Google Scholar
  8. Freundlich, H. (1906). Adsorption in solution. Physical Chemistry Society, 40, 1361–1368.Google Scholar
  9. Gustafsson, J. P. (2006). VMINTEQ 2.50 software manual. Retrieved January 2006 from http://www.lwr.kth.se/English/OurSoftware/vminteq.
  10. Hawari, A. H., & Mulligan, C. N. (2006). Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresource Technology, 97, 692–700.CrossRefGoogle Scholar
  11. Hussein, M. Z., Tarmizi, R. S. H., Zainal, Z., Ibrahim, R., & Badri, M. (1996). Preparation and characterization of active carbons from oil palm shells. Carbon, 34, 1447–1454.CrossRefGoogle Scholar
  12. Issabayeva, G. (2005). Adsorption and electroreduction of copper and lead ions on palm shell activated carbon. Dissertation, University of Malaya.Google Scholar
  13. Issabayeva, G., Aroua, M. K., & Sulaiman, N. M. N. (2006). removal of lead from aqueous solutions on palm shell activated carbon. Bioresource Technology, 97, 2350–2355.Google Scholar
  14. Jia, Y. F., & Thomas, K. M. (2000). Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir, 16, 1114–1122.CrossRefGoogle Scholar
  15. Kislenko, V. N., & Oliynyk, L. P. (2002). Complex formation of polyethyleneimine with copper(II), nickel(II), and cobalt(II) ions. Journal of Polymer Science A, 40, 914–922.CrossRefGoogle Scholar
  16. Kobya, M., Demirbas, E., Senturk, E., & Ince, M. (2005). Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology, 96, 1518–1521.CrossRefGoogle Scholar
  17. Kokorin, A. I., Lymar, S. V., & Parmon, V. N. (1981). Structure of the polymer coil of branched polyethyleneimine in solution in the presence of copper ions. Polymer Science USSR, 23, 2209–2214.CrossRefGoogle Scholar
  18. Kumar, K. V., & Sivanesan, S. (2007). Sorption isotherm for safranin onto rice husk. Dyes and Pigments, 72, 130–133.CrossRefGoogle Scholar
  19. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society, 40, 1361–1368.CrossRefGoogle Scholar
  20. Lopez-Ramon, M. V., Stoeckli, F., Moreno-Castilla, C., & Carasco-Martin, F. (1999). On the characterisation of acidic and basic surface sites on carbons by various techniques. Carbon, 37, 1215–1221.CrossRefGoogle Scholar
  21. Lua, A. C., & Guo, J. (1998). Preparation and characterization of chars from oil palm waste. Carbon, 36, 1663–1670.CrossRefGoogle Scholar
  22. Maroto-Valer, M. M., Tang, Z., & Zhang, Y. (2005). CO2 capture by activated and impregnated anthracites. Fuel Processing Technology, 86, 1487–1502.CrossRefGoogle Scholar
  23. Monser, L., & Adhoum, N. (2002). Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Separation and Purification Technology, 26, 137–146.CrossRefGoogle Scholar
  24. Mullet, M., Fievet, P., Szymczyk, A., Foissy, A., Reggiani, J. C., & Pagetti, J. (1999). A simple and accurate determination of the point of zero charge of ceramic membranes. Desalination, 121, 41–48.CrossRefGoogle Scholar
  25. Ozkaya, B. (2006). Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. Journal of Hazardous Materials, B129, 158–163.CrossRefGoogle Scholar
  26. Park, S. J., & Jang, Y. S. (2002). Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(IV). Journal of Colloid and Interface Science, 249, 458–463.CrossRefGoogle Scholar
  27. Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of Physical Chemistry, 63, 1024.CrossRefGoogle Scholar
  28. Saygideger, S., Gulnaz, O., Istifli, E. S., & Yucel, N. (2005). Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: effect of physicochemical environment. Journal of Hazardous Materials, 126, 96–104.CrossRefGoogle Scholar
  29. Suen, S. Y. (1996). A comparison of isotherm and kinetic models for binary solute adsorption to affinity membranes. Journal of Chemical Technology and Biotechnology, 65, 249–257.CrossRefGoogle Scholar
  30. Ucer, A., Uyanik, A., & Aygun, S. F. (2006). Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Separation and Purification Technology, 47, 113–118.CrossRefGoogle Scholar
  31. Vladimir, S. J., & Malik, D. (2002). Characterization and metal sorptive properties of oxidized active carbon. Journal of Colloid and Interface Science, 250, 213–220.CrossRefGoogle Scholar
  32. Wu, S. N., & Chen, P. J. (2001). Modification of a commercial activated carbon for metal adsorption by several approaches. Paper presented at International Containment & Remediation Technology Conference and Exhibition, Orlando, Florida, June.Google Scholar
  33. Xu, X., Song, C., Andresen, J. M., Miller, B. G., & Scaroni, A. W. (2002). Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy and Fuels, 16, 1463–1469.CrossRefGoogle Scholar
  34. Yin, C. Y., Aroua, M. K., & Daud, W. M. A. W. (2007a). Modification of granular activated carbon using low molecular weight polymer for enhanced removal of Cu 2+  from aqueous solution. Paper presented at International Conference on Water Management and Technology Applications in Developing Countries, Kuala Lumpur, Malaysia, May.Google Scholar
  35. Yin, C. Y., Aroua, M. K., & Daud, W. M. A. A. (2007b). Impregnation of palm shell activated carbon with polyethyleneimine and its effect on Cd2+ adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 307, 128–136.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Chun Yang Yin
    • 1
  • Mohamed Kheireddine Aroua
    • 2
  • Wan Mohd Ashri Wan Daud
    • 2
  1. 1.Faculty of Chemical EngineeringUniversiti Teknologi MARASelangorMalaysia
  2. 2.Department of Chemical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations