Water, Air, and Soil Pollution

, Volume 192, Issue 1–4, pp 85–103 | Cite as

Sulphur Isotopes, Trace Elements and Mineral Stability Diagrams of Waters from the Abandoned Fe–Cu Mines of Libiola and Vigonzano (Northern Apennines, Italy)

  • Gianni Cortecci
  • Tiziano Boschetti
  • Enrico Dinelli
  • Roberto Cabella


The geochemical characteristics of rills draining pyrite-chalcopyrite tailings impoundments and of bordering streams were investigated at the ophiolite-hosted Libiola and Vigonzano abandoned massive sulphide mines, northern Apennines Italy. Water samples were analysed for major and trace chemical composition, hydrogen and oxygen isotope composition, and sulphur isotope composition of aqueous sulphate. Sulphur isotope composition was determined also for some samples of ore sulphides. At Libiola, the newly acquired chemical results on waters corroborate those from previous investigations, thus providing additional support to existing geochemical models in terms of metal distribution, solid phases precipitation, reaction path modelling and mixing reaction paths, and environmental problems. At Vigonzano, the chemical characteristics of waters are similar to those at Libiola. In both localities, solution-secondary phase equilibria estimated using an updated thermodynamic dataset account for mineralogy in the field, including poorly crystalline phases like jurbanite and hydrowoodwardite. The hydrogen and oxygen isotope composition of waters at Libiola and Vigonzano agrees with their meteoric origin. Acid to neutral mine waters do not show any significant isotope shift with respect to the initial water, in spite of the oxidation of even large amounts of pyrite/chalcopyrite ore. The sulphur isotope composition of aqueous sulphate in mine rills at Libiola (δ 34S = 5.6 to 8.5‰; mean 6.5‰) matches that of massive sulphide ore (δ 34S = −0.5 to 6.7‰; mean 5.8‰), in keeping with the supergenic origin of the sulphate and related isotope effects in the sulphide oxidation process. Sulphate in mine waters at Vigonzano displays lower δ 34S values in the range 0.6 to 1.5‰. The δ 34S signature of massive ore specimens is within the range reported for most volcanic-hosted massive sulphide deposits, including Cyprus-type deposits.


Apennine ophiolites mine water sulphidic mine tailings sulphur isotopes water isotopes 


  1. Accornero, M., Marini, L., Ottonello, G., & Vetuschi Zuccolini, M. (2005). The fate of major constituents and chromium and other trace elements when acid waters from the derelict Libiola mine (Italy) are mixed with stream waters. Applied Geochemistry, 20, 1368–1390.CrossRefGoogle Scholar
  2. Alpers, C. N., & Blowes, D. W. (Eds.) (1994). Environmental Geochemistry of Sulfide Oxidation. American Chemical Society, Symposium Series, vol. 550, 681 pp.Google Scholar
  3. Antofilli, M., Borgo, E., & Palenzona, A. (1983). I nostri minerali: geologia e mineralogia in Liguria. Sagep Editrice, Genova, 295 pp.Google Scholar
  4. Bertolani, M. (1952). I giacimenti cupriferi nelle ofioliti di Sestri Levante (Liguria). Periodico di Mineralogia, 21, 149–170.Google Scholar
  5. Bethke, C. M. (2002). The Geochemist’s Workbench. A User’s Guide to Rxn, Act2, Tact, React, and Gtplot Release 4.0. Urbana, IL: University of Illinois Hydrogeology Program, 236 pp.Google Scholar
  6. Bonatti, E., Zerbi, M., Kay, R., & Rydell, H. (1976). Metalliferous deposits from the Apennine ophiolites: Mesozoic equivalents of modern deposits from oceanic spreading centers. Geological Society American Bulletin, 87, 83–94.CrossRefGoogle Scholar
  7. Bortnikov, N. S., & Vikent’ev, I. V. (2005). Modern base metal sulphide mineral formation in the world ocean. Geology of Ore Deposits, 47, 13–44.Google Scholar
  8. Boschetti, T., & Toscani, L. (2008). Springs and streams of the Taro-Ceno catchments (Northern Apennine, Italy): reaction path modeling of waters interacting with serpentinized-ultramafic rocks. Chemical Geology (submitted).Google Scholar
  9. Bravo-Suárez, J. J., Páez-Mozo, E. A., & Oyama, S. T. (2004). Models for the estimation of thermodynamic properties of layered double hydroxides: application to the study of their anion exchange characteristics. Química Nova, 27, 574–581.Google Scholar
  10. Bruni, J., Canepa, M., Cipolli, F., Marini, L., Ottonello, G., Vetuschi Zuccolini, M., et al. (2002). Irreversible water-rock mass transfer accompanying the generation of the neutral, Mg-HCO3 and high-pH, Ca-OH spring waters of the Genova province, Italy. Applied Geochemistry, 17, 455–474.CrossRefGoogle Scholar
  11. Carbone, C., Marescotti, P., Cabella, R., & Lucchetti, G. (2002). Sulphide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). In: PLINIUS, 28, 88–89 (abstracts 82° Convegno SIMP, Cosenza, 18–20 September 2001). Litografia Felici, Pisa.Google Scholar
  12. Carbone, C., Marescotti, P., Cabella, R., Lucchetti, G., & Martinelli, A. (2007). Mineralogical features of varicolored stream sediments from acid sulfate waters in Libiola mine (Italy). In Epitome, vol. 2, 431–432. Geoitalia 2007, 6th Italian Forum of Earth Sciences, September 12–14, 2007, Rimini. FIST, Federazione Italiana di Scienze della Terra.Google Scholar
  13. Carvalho, D., Barriga, F. J. A. S., & Munhà, J. (1999). Bimodal siliciclastic systems—the case of the Iberian Pyrite Belt. In: C. T. Barrie & M. D. Hannington, (Eds.) Volcanic Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings. Review in Economic Geology 8, 375–408. Society of Economic Geologists, Inc., Littleton, Colorado.Google Scholar
  14. Chou, I. M., Seal II., R. R., & Hemingway, B. S. (2002). Determination of melanterite–rozenite and chalcanthite–bonattite equilibria by humidity measurements at 0.1 MPa. American Mineralogist, 87, 108–114.Google Scholar
  15. Christov, C. (2003). Thermodynamic study of the co-crystallization of ammonium, sodium and potassium alums and chromium alums. Computer Coupling of Phase Diagrams and Thermochemistry, 27, 153–160.Google Scholar
  16. Cook, N. J., & Hoefs, J. (1997). Sulphur isotope characteristics of metamorphosed Cu (Zn) volcanogenic massive sulphide deposits in the Norwegian Caledonides. Chemical Geology, 135, 307–324.CrossRefGoogle Scholar
  17. Cortecci, G., Dinelli, E., Lucchini, F., & Vaselli, O. (2001). Hydrogeochemical and isotopic investigations in the abandoned Fe–Cu mine of Libiola (northern Italy). In R. Cidu (Ed.) Proceedings of the Tenth International Symposium on Water–Rock Interaction WRI-10 (pp. 1197–1200). Lisse: A.A. Balkema Publ. (Villasimius, Italy, 10–15 June 2001).Google Scholar
  18. Danielsson, L. G., Magnusson, B., & Westerlund, S. (1978). An improved metal extraction procedure for the determination of trace metals in seawater by atomic absorption spectrotometry with electrothermal atomization. Analytica Chimica Acta, 98, 47–57.CrossRefGoogle Scholar
  19. Derron, M. H. (1999). Interaction eau–roche de basse température: géochimie des métaux dans l’altèration météorique des roches mafiques alpine. Thése de doctorat. Faculté des Sciences de l’Université de Lausanne.Google Scholar
  20. Derron, M. H., Hunziker, J., & Pfeifer, H. R. (2002). Géochimie des eaux acides de l’ancienne mine de cuivre de Libiola (Ligurie, Italie). Bulletin de la Société Vaudoise des Sciences Naturelles, 88, 175–194.Google Scholar
  21. Dinelli, E., Cortecci, G., & Lucchini, F. (1996). Geochemical characterization of sulphide waste rock piles from mining workings in Northern Apennines, Emilia province, Italy. Mineralogica et Petrographica Acta, 39, 109–123.Google Scholar
  22. Dinelli, E., & Lombini, L. (1996). Metal distribution in plants growing on copper mine spoils in Northern Apennies, Italy: the evaluation of seasonal variations. Applied Geochemistry, 11, 375–385.CrossRefGoogle Scholar
  23. Dinelli, E., Lucchini, F., Fabbri, M., & Cortecci, G. (2001). Metal distribution and environmental problems related to sulfide oxidation in the Libiola copper mine area (Ligurian Apennines, Italy). Journal of Geochemical Exploration, 74, 141–152.CrossRefGoogle Scholar
  24. Dinelli, E., Morandi, N., & Tateo, F. (1998). Fine-grained weathering products in waste disposal from two sulphide mines in the northern Apennines, Italy. Clay Minerals, 33, 423–433.CrossRefGoogle Scholar
  25. Dinelli, E., & Tateo, F. (2001a). Factors controlling heavy-metal dispersion in mining areas: the case of Vigonzano (northern Italy), a Fe–Cu sulfide deposit associated with ophiolitic rocks. Environmental Geology, 40, 1138–1150.CrossRefGoogle Scholar
  26. Dinelli, E., & Tateo, F. (2001b). Sheet silicates as effective carriers of heavy metals in the ophiolitic mine area of Vigonzano (northern Italy). Mineralogical Magazine, 65, 121–132.CrossRefGoogle Scholar
  27. Dinelli, E., & Tateo, F. (2002). Different types of fine-grained sediments associated with acid mine drainage in the Libiola Fe–Cu mine area (Ligurian Apennines, Italy). Applied Geochemistry, 17, 1081–1092.CrossRefGoogle Scholar
  28. Dubuis, R., Moulin, C., Pfanzelter, A., & Roch, K. (1998). Etude geochimique et isotopique des eaux des bassins versants Petronio & Gromolo. Faculté des Sciences de l’Universitè de Lausanne.Google Scholar
  29. Ferrario, A. (1973). I giacimenti cupriferi nelle pillow lavas della Liguria orientale. Rendiconti Società Italiana di Mineralogia e Petrolologia, 29, 485–495.Google Scholar
  30. Ferrario, A., & Garuti, G. (1980). Copper deposits in the basal breccia and volcano-sedimentary sequences of the eastern Ligurian ophiolites (Italy). Mineralium Deposita, 15, 291–303.CrossRefGoogle Scholar
  31. Filipek, L. F., & Plumlee, G. S. (Eds.) (1999). The environmental geochemistry of mineral deposits; part B: case studies and research topics. Reviews in Economic Geology, vol. 6. Society of Economic Geologists, Inc. Littleton, Colorado.Google Scholar
  32. Hannington, M. D., Galley, A. G., Herzig, P. M., & Petersen, S. (1998). Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulphide deposits. In P.M Herzig, S.E. Humphris, D.J. Miller & R.A. Zierenberg (Eds.) Proceed. Ocean Drilling Program, Scientific Results, 158, 389–415. College Station, TX (Ocean Drilling Program).Google Scholar
  33. Hemingway, B. S., Seal, R. R. II., & Chou, I. M. (2002). Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals. U.S. Geological Survey Open File Report 02-161, 13 pp. Reston, VA. Retrieved January 11, 2008, from
  34. Holt, B. D., & Engelkemeir, A. G. (1970). Thermal decomposition of barium sulphate to sulphur dioxide for mass spectrometric analysis. Analytical Chemistry, 42, 1451–1453.CrossRefGoogle Scholar
  35. Huston, D. L. (1999). Stable isotopes and their significance for understanding the genesis of volcanic-hosted massive sulphide deposits: a review. In: C. T. Barrie & M. D. Hannington, (Eds.) Volcanic Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings. Reviews in Economic Geology, vol. 8, 157–179. Society of Economic Geologists. Inc., Littleton, Colorado.Google Scholar
  36. Jambor, J. L., Blowes, D. W., & Ritchie, A. I. M. (Eds) (2003). Environmental Aspects of Mine Wastes. Mineralogical Association of Canada, Short-Course Series, vol. 31, 430 pp.Google Scholar
  37. Longinelli, A., & Selmo, E. (2003). Isotopic composition of precipitation in Italy: a first overall map. Journal of Hydrology, 270, 75–88.CrossRefGoogle Scholar
  38. Lottermoser, B. G. (2003). Mine wastes: Characterization, treatment, and environmental impacts p. 277. Berlin: Springer-Verlag.Google Scholar
  39. Ludwig, B., Beese, F., & Michel, K. (2005). Modelling cation transport and pH buffering during unsaturated flow through intact subsoils. European Journal of Soil Science, 56, 635–645.CrossRefGoogle Scholar
  40. Majzlan, J., Navrotsky, A., McCleskey, R. B., & Alpers, C. N. (2006). Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5. European Journal of Mineralogy, 18, 175–186.CrossRefGoogle Scholar
  41. Marini, L., Saldi, G., Cipolli, F., Ottonello, G., & Vetuschi Zuccolini, M. (2003). Geochemistry of water discharges from the Libiola mine, Italy. Geochemical Journal, 37, 199–216.Google Scholar
  42. Ohmoto, H., & Rye, R. O. (1979). Isotopes of sulfur and carbon. In H. L. Barnes (Ed.) Geochemistry of Hydrothermal Ore Deposits, 2nd ed (pp. 509–567). New York: Wiley & Sons Inc.Google Scholar
  43. Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculation. Washington DC: US Department of the Interior, US Geological Survey.Google Scholar
  44. Peltier, E., Allada, R., Navrotsky, A., & Sparks, D. L. (2006). Nickel solubility and precipitation in soils: a thermodynamic study. Clays and Clay Minerals, 54, 153–164.CrossRefGoogle Scholar
  45. Plumlee, G. S., & Logsdon, M. J. (Eds) (1999). The environmental geochemistry of mineral deposits; part A: processes, techniques, and health issues. Reviews in Economic Geology, vol. 6A, 371 pp. Society of Economic Geologists, Inc. Littleton, Colorado.Google Scholar
  46. Pollard, A. M., Thomas, R. G., & Williams, P. A. (1992). The stabilities of antlerite and Cu3SO4(OH)4*2H2O: their formation and relationships to other copper(II) sulfate minerals. Mineralogical Magazine, 56, 359–365.CrossRefGoogle Scholar
  47. Powell, K. J., Brown, P. L., Byrne, R. H., Gajda, T., Hefter, G., Sjöberg, S., et al. (2007). Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 2: The Cu2+–OH, Cl, \({\text{CO}}_{\text{3}}^{{\text{2}} - } \), \({\text{SO}}_{\text{4}}^{{\text{2}} - } \), and \({\text{PO}}_{\text{4}}^{{\text{3}} - } \) systems (IUPAC Technical Report). Pure Applied Chemistry, 79, 895–950.CrossRefGoogle Scholar
  48. Prietzel, J., & Mayer, B. (2005). Isotopic fractionation of sulfur during formation of basaluminite, alunite and natroalunite. Chemical Geology, 215, 525–535.CrossRefGoogle Scholar
  49. Reardon, E. J. (1988). Ion interaction parameters for aluminum sulfate and application to the prediction of metal sulfate solubility in binary salt systems. Journal of Physical Chemistry, 92, 6426–6431.CrossRefGoogle Scholar
  50. Savin, S. M. (1980). Oxygen and hydrogen isotope effects in low-temperature mineral–water interactions. In P. Fritz, & J. Ch. Fontes (Eds.) Handbook of environmental isotope geochemistry 1, the terrestrial environment, A (pp. 283–327). New York: Elsevier.Google Scholar
  51. Seal, R. R., & Hammarstrom, J. M. (2003). Geoenvironmental models of mineral deposits—Examples from massive sulphide and gold deposits. In: J. L. Jambor, D. W. Blowes & A. I. M. Ritchie (Eds.), Environmental Aspects of Mine Wastes. Mineralogical Association of Canada Short Courses Series, 31, 11–50.Google Scholar
  52. Seal, R. R. II., Hammarstrom, J. M., Foley, N. K., & Alpers, C. N. (2002). Geoenvironmental models for seafloor massive sulfide deposits. In R. R. Seal II, & N. K. Foley (Eds.) Progress on Geoenvironmental Models for selected Mineral Deposit Types. U.S. Geological Survey Open-File Report 02-195, chapter L, pp. 196–212. Retrieved January 11, 2008, from
  53. Singh, S. S. (1980). Thermodynamic properties of synthetic basic aluminite [Al4(OH)10SO4*5H2O] from solubility data. Canadian Journal of Soil Science, 60, 381–384.CrossRefGoogle Scholar
  54. Spangenberg, J. E., Dold, B., Vogt, M. L., & Pfeifer, H. R. (2007). Stable hydrogen and oxygen isotope composition of waters from mine tailings in different climatic environments. Environmental Science & Technology, 41, 1870–1878.CrossRefGoogle Scholar
  55. Spooner, E. T. C., Beckinsale, R. D., Fyfe, W. S., & Smewing, J. D. (1974). 18O enriched ophiolitic metabasic rocks from E. Liguria (Italy), Pindos (Greece) and Trodos (Cyprus). Contributions to Mineralogy and Petrology, 47, 41–62.CrossRefGoogle Scholar
  56. Taylor, B. E., Wheeler, M. C., & Nordstrom, D. K. (1984). Stable isotope geochemistry of acid mine drainage: experimental oxidation of pyrite. Geochimica Cosmochimica Acta, 48, 2669–2678.CrossRefGoogle Scholar
  57. Thode, H. G., Monster, J., & Dunford, H. B. (1961). Sulphur isotope geochemistry. Geochimica et Cosmochimica Acta, 25, 159–274.CrossRefGoogle Scholar
  58. Tumiati, S., Godard, G., Masciocchi, N., Martin, S., & Ponticelli, D. (2008). Environmental factors controlling the precipitation of Cu-bearing hydrotalcite-like compounds from mine waters. The case of the "Eve verda" spring (Aosta Valley, Italy). European Journal of Mineralogy, 20 (in press).Google Scholar
  59. van Stempvoort, D. R., & Krouse, H. R. (1994). Controls of δ18O in sulfate. Review of experimental data and application to specific environment. In C. N. Alpers & H. Krouse (Eds.). Environmental Geochemistry of Sulfide Oxidation. ACS Symposium Series 550, Washington, D.C., 446–480.Google Scholar
  60. Verdes, G., Robert, G., & Sylvie, C. (1992). Thermodynamic properties of the aluminate ion and of bayerite, boehmite, diaspore, and gibbsite. European Journal of Mineralogy, 4, 767–792.Google Scholar
  61. Vieillard, P. (1988). Propriétés thermochimiques des composés du cuivre. Atlas de données thermodynamiques. Sciences Géologiques, Bulletin, 41, 289–308.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Gianni Cortecci
    • 1
  • Tiziano Boschetti
    • 2
  • Enrico Dinelli
    • 3
    • 4
  • Roberto Cabella
    • 5
  1. 1.Istituto di Geoscienze e Georisorse, Area della Ricerca-CNRPisaItaly
  2. 2.Dipartimento di Scienze della TerraUniversità di ParmaParmaItaly
  3. 3.Centro Interdipartimentale di Ricerca per le Scienze AmbientaliAlma Mater Studiorum-Università di BolognaRavennaItaly
  4. 4.Dipartimento di Scienze della Terra e Geologico-AmbientaliAlma Mater Studiorum-Università di BolognaBolognaItaly
  5. 5.Dipartimento per lo Studio del Territorio e delle sue RisorseUniversità di GenovaGenovaItaly

Personalised recommendations