Water, Air, and Soil Pollution

, Volume 189, Issue 1–4, pp 163–177 | Cite as

Complementary Approaches to Assess the Environmental Quality of Estuarine Sediments

  • Nuria Fernández
  • Juan Bellas
  • José Ignacio Lorenzo
  • Ricardo Beiras
Article

Abstract

An assessment of the environmental quality of sediments at several locations of the Ría de Pontevedra (NW of Spain) was performed by integrating toxicity data obtained from multiespecies bioassays, chemical data from analysis of mussels and sediment, and physical–chemical parameters of the sampled sites. Subsequently, a toxicity identification evaluation (TIE) method intended for characterization and identification of the toxic agents was applied to the most polluted location by using the Paracentrotus lividus sea urchin bioassay. Both metals and organic compounds seem to be the causative agents of toxicity in elutriates of the studied sediment. Finally, multivariate statistics were applied for a better interpretation of results. A factor analysis was developed to establish the relationship among variables and to derive local sediment quality guidelines (SQG) by linking chemical contamination to biological effects. When multidimensional scaling and cluster analysis were performed to group the locations according to either the chemistry or toxicity data, P3-site was always clearly broken up the others. The different approaches all supported the same conclusion: site P3 can be considered highly contaminated by both trace metals and PAHs resulting in high toxicity for all the tested species.

Keywords

Bioaccumulation Estuary Metal PAH Sediment quality TIE Toxicity Paracentrotus lividus Mytilus galloprovincialis Ciona intestinalis 

Notes

Acknowledgments

The authors would like to express their thanks to CACTI (Centro de Apoio Científico Tecnolóxico á Investigación – Universidade de Vigo–Spain) and IEO (Instituto Español de Oceanografía) for their help in the chemical analyses. This work was funded by the Spanish “Comisión Interministerial de Ciencia y Tecnología” through grant AMB99-0946 and REN2000-0498MAR.

References

  1. Anderson, B., Hunt, J., Phillips, B., Thompson, B., Lowe, S., Taberski, K. (2007). Patterns and trends in sediment toxicity in the San Francisco Estuary. Environmental Research, 105(1), 145–155.Google Scholar
  2. APHA-AWWA-WPCF (1992). Métodos normalizados para el análisis de aguas potables y residuales. Ediciones Díaz de Santos. S.A. Madrid.Google Scholar
  3. Baumard, P., Budzinski, H., Michon, Q., Garrigues, P., Burgeot, T., & Bellocq, J. (1998). Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine, Coastal and Shelf Science, 47, 77–90.CrossRefGoogle Scholar
  4. Beiras, R. (2002). Comparison of methods to obtain a liquid phase in marine sediment toxicity bioassays with Paracentrotus lividus sea urchin embryos. Archives of Environmental Contamination and Toxicology, 42, 23–28.CrossRefGoogle Scholar
  5. Beiras, R., Bellas, J., Fernández, N., Lorenzo, J. I., & Cobelo-García, A. (2003b). Assessment of coastal marine pollution in Galicia (NW Iberian Peninsula); metal concentrations in seawater, sediments and mussel (Mytillus galloprovincialis) versus embryo-larval bioassays using Paracentrotus lividus and Ciona intestinalis. Marine Environmental Research, 56, 531–553.CrossRefGoogle Scholar
  6. Beiras, R., Fernández, N., Bellas, J., Besada, V., González-Quijano, A., & Nunes, T. (2003a). Integrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel bioaccumulation and embryo-larval toxicity bioassay. Chemosphere, 52, 1209–1224.CrossRefGoogle Scholar
  7. Bellas, J., Beiras, R., Mariño, J. C., & Fernández, N. (2005). Toxicity of organic compounds to marine invertebrates embryos and larvae: A comparison between sea urchin embryogenesis bioassay and alternative test species. Ecotoxicology, 14, 337–353.CrossRefGoogle Scholar
  8. Bellas, J., Vázquez, E., & Beiras, R. (2001). Toxicity of Hg, Cu, Cd and Cr on early developmental stages of Ciona intestinalis (Chordata, Ascidiacea) with potential application in marine water quality assessment. Water Research, 35(12), 2905–2912.CrossRefGoogle Scholar
  9. Boucher, A. M., & Watzin, W. C. (1998). Toxicity identification evaluation of metal-contaminated sediments using an artificial pore water containing dissolved organic carbons. Environmental Toxicology and Chemistry, 18(3), 509–518.CrossRefGoogle Scholar
  10. Burgess, R. M., Ho, K. T., Tagliabue, M. D., Kuhn, A., Comeleo, R., Comeleo, P., et al. (1995). Toxicity characterization of an industrial and a municipal effluent discharging to the marine environment. Marine Pollution Bulletin, 30(8), 524–535.CrossRefGoogle Scholar
  11. Carballeira, A. (2003). Considerations in the design of a monitoring program of the biological effects of the Prestige oil spill. Ciencias Marinas, 29(1), 123–139.Google Scholar
  12. Chapman, P. M. (2000). The sediment quality triad then, now and tomorrow. International Journal of Environment and Pollution, 13, 351–356.CrossRefGoogle Scholar
  13. Chapman, P. M., & Mann, G. S. (1999). Sediment quality guidelines (SQGs) and ecological risk assessment (ERA). Marine Pollution Bulletin, 38(5), 339–344.CrossRefGoogle Scholar
  14. Coquery, M., Azemard, S., & de Mora, S. J. (2000). World-wide intercomparison exercise for the determination of trace elements and methylmercury in estuarine sediment sample IAEA-405. Report IAEA/AL/127, IAEA/MEL/ 70, Monaco.Google Scholar
  15. Deanovic, L., Connor, V. M., Knight, A. W., & Maier, K. J. (1999). The use of bioassay and Toxicity Identification Evaluation (TIE) procedures to assess recovery and effectiveness of remedial activities in a mine drainage-impacted stream system. Archives of Environmental Contamination and Toxicology, 36, 21–27.CrossRefGoogle Scholar
  16. DelValls, T. A., & Chapman, P. (1998). Site-specific sediment quality guidelines for the Gulf of Cádiz (Spain) and San Francisco Bay (USA), using the sediment quality triad and multivariate analysis. Ciencias Marinas, 24(3), 313–336.Google Scholar
  17. DelValls, T. A., Forja, J. M., & Gómez-Parra, A. (1998). Integrative assessment of sediment quality in two litoral ecosystems from the Gulf of Cádiz, Spain. Environmental Toxicology and Chemistry, 17, 1083–1084.CrossRefGoogle Scholar
  18. Fernández, N. (2002). Evaluación biológica de la contaminación marina costera mediante bioensayos con embriones del erizo de mar Paracentrotus lividus. Ph. Thesis. Universidade de Vigo, Spain.Google Scholar
  19. Fernández, N., & Beiras, R. (2001). Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology, 10(5), 263–271.CrossRefGoogle Scholar
  20. Fernández, N., Cesar, A., González, M., & DelValls, T. A. (2006a). Level of contamination in sediments affected by the Prestige oil-spill and impact on the embryo development of sea-urchin. Ciencias Marinas, 32(2B), 421–427.Google Scholar
  21. Fernández, N., Cesar, A., Salamanca, M. J., & DelValls, T. A. (2006b). Toxicological characterisation of the aqueous soluble phase of the Prestige fuel-oil using the sea urchin embryo bioassay. Ecotoxicology, 15(7), 593–599.CrossRefGoogle Scholar
  22. His, E., Beiras, R., & Seaman, M. N. L. (1999b). The assessment of marine pollution. Bioassays with bivalve embryos and larvae. In A. I. Southward, P. A. Tyler, & C. M. Young (Eds.) Advances in Marine Biology, Vol 37. London: Academic Press.Google Scholar
  23. His, E., Heyvang, I., Geffard, O., & De Montaudouin, X. (1999a). A comparison between oyster (Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassay for toxicological studies. Water Research, 33(7), 1706–1718.CrossRefGoogle Scholar
  24. His, E., Seaman, M. N. L., & Beiras, R. (1997). A simplification of the bivalve embryogenesis and larval development bioassay method for water quality assessment. Water Research, 31(2), 351–355.CrossRefGoogle Scholar
  25. Ho, K. T., Mckinney, R. A., Khun, A., Pelletier, M. C., & Burgess, R. M. (1997). Identification of acute toxicants in New Bedford Harbor sediments. Environmental Toxicology and Chemistry, 16(3), 551–558.CrossRefGoogle Scholar
  26. Kobayashi, N. (1981). Comparative toxicity of various chemicals, oil extracts and oil dispersant extracts to Canadian and Japanese sea urchin eggs. Publications of Seto. Mar. Biol. Lab. XXVI (1/3), 123–133.Google Scholar
  27. Kobayashi, N. (1995). Bioassay data for marine pollution using echinoderms. In P. N. Cheremisinoff (Ed.) Encyclopaedia of Environmental Control Technology, Vol. 9. Houston: Gulf Publ. Co.Google Scholar
  28. Kobayashi, N., & Okamura, H. (2002). Effects of new antifouling compounds on the development of sea urchin. Marine Pollution Bulletin, 44, 748–751.CrossRefGoogle Scholar
  29. Long, E. R. (1992). Ranges in chemical concentrations in sediments associated with adverse biological effects. Marine Pollution Bulletin, 24(1), 38–45.CrossRefGoogle Scholar
  30. Marking, L. L., & Dawson, V. K. (1975). Method of assessment of toxicity or efficacy of mixtures of chemicals. US Fish Wildlife Service Investigation & Control, 67, 1–8.Google Scholar
  31. McDonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development an evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5, 253–278.CrossRefGoogle Scholar
  32. NOAA (1999). Sediment Quality Guidelines developed for the National Status and Trend Programs.Google Scholar
  33. O’Connor, T. P. (1998). Mussel watch results from 1986 to 1996. Marine Pollution Bulletin, 37(1–2), 14–19.CrossRefGoogle Scholar
  34. O’Connor, T. P., & Paul, J. F. (2000). Misfit between sediment toxicity and chemistry. Marine Pollution Bulletin, 40(1), 59–64.CrossRefGoogle Scholar
  35. OSPAR Commission (2000). Quality Status Report 2000: Region IV–Bay of Biscay and Iberian Coast. OSPAR Commission, London.Google Scholar
  36. Ozretic, B., Petrovic, S., & Krajnovic-Ozretic, M. (1998). Toxicity of TBT-based paint leachates on the embryonic development of the sea urchin Paracentrotus lividus Lam. Chemosphere, 37(6), 1109–1118.CrossRefGoogle Scholar
  37. Pérez, M. I. (2003). Estudio de los niveles de contaminación por hidrocarburos aromáticos policíclicos en la Ría de Pontevedra y evaluación de su toxicidad sobre la embriogénesis del erizo de mar Paracentrotus lividus. Master Tesis. Universidade de Vigo. Spain.Google Scholar
  38. Riba, I., Zitko, V., Forja, J. M., & DelValls, T. A. (2003). Deriving sediment quality guidelines in the Guadalquivir estuary associated with the Aznalcóllar mining spill: A comparison of different approaches. Ciencias Marinas, 29(3), 1–14.Google Scholar
  39. Smedes, F., Davies, I. M., Wells, D., Allan, A., & Besada, V. (2000). Quality Assurance of Sampling and Sample Handling (QUASH). Interlaboratory study on sieving and normalisation of geographically different sediments: QUASH Round 5 (sponsored by the EU Standards, Measurements and Testing Programme), Aberdeen.Google Scholar
  40. Swartz, R. C. (1999). Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures. Environmental Toxicology and Chemistry, 18(4), 780–787.CrossRefGoogle Scholar
  41. Thomas, K. V., Thain, J. E., & Waldock, M. J. (1998). Identification of toxic substances in United Kingdom estuaries. Environmental Toxicology and Chemistry, 18(3), 401–411.CrossRefGoogle Scholar
  42. Vanegas, C., Espina, S., Botello, A. V., & Villanueva, S. (1997). Acute toxicity and synergism of cadmium and zinc in white shrimp, Panaeus setiferus, juveniles. Bulletin of Environmental Contamination and Toxicology, 58, 87–92.CrossRefGoogle Scholar
  43. Villeneuve, J.-P., & de Mora, S. J. (2000). Report on the Worldwide and Regional intercomparison for the determination of organochlorine compounds in the fish homogenate IAEA- 406. IAEA-MEL69.Google Scholar
  44. Wells, D. E. (1996). Preliminary review of the QUASIMEME Laboratory Testing Scheme 1993–1996. QUASIMEME Project Office. Aberdeen, UK.Google Scholar
  45. Weltz, B., & Schubert-Jacobs, M. (1991). Evaluation of the flow injection system and optimization of parameters for hydride generation atomic absorption spectrometry. Atomic Spectroscopy, 12(4), 91–103.Google Scholar
  46. Wenning, R. J., & Ingersoll, G. C. (2002). Summary of the SETAC Pellston Workshop on use of sediment quality guidelines and related tolls for the assessment of contaminated sediments; 17–22 August 2002; Fairmont, Montana, USA. Society of Environmental Toxicology and Chemistry (SETAC). Pensacola FL, USA.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Nuria Fernández
    • 1
  • Juan Bellas
    • 2
  • José Ignacio Lorenzo
    • 2
  • Ricardo Beiras
    • 2
  1. 1.Departamento de Bioloxía celular e EcoloxíaUniversidade de Santiago de CompostelaCompostelaSpain
  2. 2.Departamento de Ecoloxía e Bioloxía AnimalUniversidade de VigoVigoSpain

Personalised recommendations