Water, Air, and Soil Pollution

, Volume 189, Issue 1–4, pp 61–68 | Cite as

Structural Analysis of Tillandsia usneoides L. Exposed to Air Pollutants in São Paulo City–Brazil

  • Edenise Segala AlvesEmail author
  • Bárbara Baêsso Moura
  • Marisa Domingos


Bioindicators plants are important for the evaluation of air quality and Tillandsia usneoides L., an atmospheric epiphyte bromeliad, has been used for this purpose. The present study aims at evaluate the structural pattern of the leaf of this species when exposed to urban air pollutants, and determining whether the leaves present structural parameters that could be used as indicators of such pollutants. Samples of T. usneoides were exposed in São Paulo, the biggest city of Brazil, for 8, 16 and 24 weeks, and compared with others kept in a rural area. The urban pollution of São Paulo affected the structure of the leaves of T. usneoides causing alterations, especially in the scales, density of stomata and epidermis thickness. Qualitative alterations in the mesophyll were not observed in plants exposed at the polluted sites. These structural characteristics of T. usneoides seem to account for its high tolerance to heavy metal accumulation. The percentage of anomalous scales may potentially be used as an alternative bioindicator parameter.


Bioindication Bromeliads CAM Leaf anatomy Scales Urban air pollution 



The authors thank CNPq (National Council for Scientific and Technological Development) for the research fellow to E.S Alves and to M. Domingos and the scholarship to B.B. Moura.


  1. Amado Filho, G. M., Andrade, L. R., Farina, M., & Malm, O. (2002). Hg localization in Tillandsia usneoides L. (Bromeliaceae), an atmospheric biomonitor. Atmospheric Environment, 36, 881–887.CrossRefGoogle Scholar
  2. Arndt, U., & Schweizer, B. (1991). The use of bioindicators for environmental monitoring in tropical and subtropical countries. In H. Ellenberg, U. Arndt, R. Bretthauer, B. Ruthsatz, & L. Steubing (Eds.) Biological monitoring signals from the environment (pp. 199–259). Berlin: Vieweg.Google Scholar
  3. Benzing, D. H., Arditti, J., Nyman, L. P., & Temple, P. J. (1992). Effects of ozone and sulfur dioxide on four epiphytic bromeliads. Environmental Experimental Botany, 32, 25–32.CrossRefGoogle Scholar
  4. Benzing, D. H., Henderson, K., Kessel, B., & Sulak, S. (1976). The absorptive capacities of bromeliad thichomes. American Journal of Botany, 63, 330–348.CrossRefGoogle Scholar
  5. Billings, F. H. (1904). A study of Tillandsia usneoides. Botanical Gazette, 38, 99–121.CrossRefGoogle Scholar
  6. Brighigna, L., Papini, A., Mosti, S., Cornia, A., Bocchini, P., & Galletti, G. (2002). The use of tropical bromeliads (Tillandsia spp.) for monitoring atmospheric pollution in the town of Florence, Italy. Revista de Biologia Tropical, 50, 577–584.Google Scholar
  7. Brighigna, L., Ravanelli, M., Minelli, A., & Ercoli, L. (1997). The use of an epiphyte (Tillandsia capuy-medusae morren) as bioindicator of air pollution in Costa Rica. The Science of the Total Environment, 198, 175–180.CrossRefGoogle Scholar
  8. Calasans, C. F., & Malm, O. (1997). Elemental mercury contamination survey in a chlor-alkali plant by the use of transplanted Spanish moss. Tillandsia usneoides (L). The Science of the Total Environment, 208, 165–177.CrossRefGoogle Scholar
  9. CETESB Companhia de Tecnologia de Saneamento Ambiental (1999). Relatório da qualidade do ar no estado de São Paulo. São Paulo: Série Relatório.Google Scholar
  10. CETESB Companhia de Tecnologia de Saneamento Ambiental (2004). Relatório da qualidade do ar no estado de São Paulo. São Paulo: Série Relatório.Google Scholar
  11. Evans, L. S., Adamski II, J. H., & Renfro, J. R. (1996). Relationships between cellular injury, visible injury of leaves, and ozone exposure levels for several dicotyledonous plant species at Great Smoky Mountains National Park. Environmental and Experimental Botany, 36, 229–237.CrossRefGoogle Scholar
  12. Falla, J., Laval Gilly, P., Henryon, M., Morlot, D., & Ferard, J. F. (2000). Biological air quality monitoring: a review. Environmental Monitoring and Assessment, 64, 627–644.CrossRefGoogle Scholar
  13. Figueiredo, A. M. G., Nogueira, C. A., Saiki, M., & Domingos, M. (2007). Assessment of atmospheric metallic pollution in São Paulo city, Brazil, employing Tillandsia usneoides L. as biomonitor. Environmental Pollution, 145, 279–292.CrossRefGoogle Scholar
  14. Figueiredo, A. M. G., Saiki, M., Ticianelli, R. B., Domingos, M., Alves, E. S., & Market, B. (2001). Determination of elements in Tillandsia usneoides by neutron activation analysis for environmental biomonitoring. Journal of Radioanalytical and Nuclear Chemistry, 249, 391–395.CrossRefGoogle Scholar
  15. Ferdinand, J. A., Fredericksen, T. S., Kouterick, K. B., & Skelly, J. M. (2000). Leaf morphology and ozone sensitivity of two open pollinated genotypes of black cherry (Prunus serotina) seedlings. Environmental Pollution, 108, 297–302.CrossRefGoogle Scholar
  16. Gravano, E., Giulietti, V., Desotgiu, R., Bussotti, F., Grossoni, P., Gerosa, G., et al. (2003). Foliar response of an Ailanthus altissima clone in two sites with different levels of ozone-pollution. Environmental Pollution, 121, 137–146.CrossRefGoogle Scholar
  17. Klumpp, A., Ansel, W., Klumpp, G., & Fomin, A. (2001). Um novo conceito de monitoramento e comunicação ambiental: a rede européia para a avaliação da qualidade do ar usando plantas bioindicadoras (EuroBionet). Revista Brasileira de Botânica, 24, 511–518.CrossRefGoogle Scholar
  18. Larcher, W. (2000). Ecofisiologia vegetal. São Carlos: Rima Artes e Textos.Google Scholar
  19. Loeschen, V. S., Martin, C. E., Smith, M., & Eder, S. (1993). Leaf anatomy and CO2 recycling during crassulacean acid metabolism in twelve epiphytic species of Tillandsia (Bromeliaceae). International Journal of Plant Sciences, 154, 100–106.CrossRefGoogle Scholar
  20. Matyssek, R., Günthardt-Georg, M. S., Landolt, W., & Keller, T. (1993). Whole-plant growth and leaf formation in ozonated hybrid poplar (Populus x euramericana). Environmental Pollution, 81, 207–212.CrossRefGoogle Scholar
  21. Pääkköen, E., Holopainen, T., & Kärenlampi, L. (1995). Ageing-related anatomical and ultrastructural changes in leaves of Birch (Betula pendula Roth.) clones as affected by low ozone exposure. Annals of Botany, 75, 285–294.CrossRefGoogle Scholar
  22. Pääkköen, E., Holopainen, T., & Kärenlampi, L. (1997). Differences in growth, leaf senescence and injury, and stomatal density in birch (Betula pendula Roth.) in relation to ambient levels of ozone in Finland. Environmental Pollution, 96, 117–127.CrossRefGoogle Scholar
  23. Richter, H. G. (1981). Anatomia des sekundarem xylems und der Rinde der Lauraceae. (Hamburg: Vereins Hamburg 5, Paul Parey).Google Scholar
  24. Guimarães, E. T., Domingos, M., Alves, E. S., Caldini, N., Lobo, D. J. A., Lichtenfels, A. J. F. C., et al. (2003). Detection of the genotoxicity of air pollutants in and round the city of São Paulo (Brazil) with the Tradescantia-micronucleus (Trad-MCN) assay. Environmental and Experimental Botany, 44, 1–8.CrossRefGoogle Scholar
  25. Sawyer, F. R., Harley, R. A., Cadle, S. H., Norbeck, J. M., Slott, R., & Bravo, H. A. (2000). Mobile sources critical review: 1998 NARSTO assessment. Atmospheric Environment, 34, 2161–2181.CrossRefGoogle Scholar
  26. Scatena, V. L., & Segecin, S. (2005). Anatomia foliar de Tillandsia L. (Bromeliaceae) dos Campos Gerais, Paraná, Brasil. Revista Brasileira de Botânica, 28, 635–649.CrossRefGoogle Scholar
  27. Setzer, J. (1966). Atlas climático e ecológico do Estado de São Paulo. São Paulo: Comissão Interestadual da Bacia do Paraná, Uruguai/Centrais Elétricas de São Paulo.Google Scholar
  28. Sharma, K. G. (1989). Cuticular and morphological dynamics in Salix nigra L. and Quercus alba L. in relation to air pollution.. In J.B. Bucher & I. Bucher-Wallin (Eds.), Air pollution and Forest Decline. (pp 527–529). Birmensdorf: Proceedings of the 14th International meeting for specialists in air pollution effects on forest ecosystems, IUFRO).Google Scholar
  29. Strehl, T., & Arndt, U. (1989). Alterações apresentadas por Tillandsia aeranthos e Tillandsia recurvata (Bromeliaceae) expostas ao HF e SO2. Iheringia Série Botânica, 39, 3–17.Google Scholar
  30. VDI-Verein Deutscher Ingenieure. (1999). Biological measuring techniques for the determination and evaluation of effects of air pollutants on plants. Fundamentals and aims. VDI 3975/1. VDI/DIN vol 1a. Berlin: Handbtch Reinhaltung der Luft, Beuth.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Edenise Segala Alves
    • 1
    Email author
  • Bárbara Baêsso Moura
    • 1
  • Marisa Domingos
    • 1
  1. 1.Instituto de BotânicaSão PauloBrazil

Personalised recommendations