Advertisement

Water, Air, and Soil Pollution

, Volume 189, Issue 1–4, pp 335–351 | Cite as

Phosphorus Dynamics in a Small Eutrophic Italian Lake

  • U. PerroneEmail author
  • A. Facchinelli
  • E. Sacchi
Article

Abstract

Phosphorous dynamics within Lake Sirio (NW Italy) were investigated, considering both water and sediments. The total phosphorus (TP) concentration in the water is about 79 μg l−1 after the winter mixing, that is in homogeneous conditions; then TP content increases up to an average of 360 μg l−1 in late autumn in the deep hypolimnium (30–45 m). This deep lake portion accounts for only 1/12 of the water volume. Close to the water-sediment interface, TP concentrations up to 530 μg l−1 are observed. Sediment sampled at depths of 20 and 33 m contains less than 2,000 mg kg−1 of TP, whereas cores from the deepest sediments (46 m) display TP values of 2,000–4,000 mg kg−1 at the water-sediment interface, increasing with depth to 16,000 mg kg−1 at about 60–100 cm. In these deep sediments the main chemical form is the Al–Fe–Mn bound P (about 90% in the high TP cores) and Fe and Mn are also highly enriched (3 and 9 times more than in the shallow sediments respectively). The P–Fe association is confirmed by SEM-EDS and XRD analyses. The vertical distribution of the P content in the water column is consistent with its release from sediments, but in this hypothesis an unrealistic P release rate from 8.1 to 3.0 g m−2y−1 was estimated. A more complex model is therefore proposed, involving a process of P concentration in the sediments of the central (deepest) part of the lake, and a short term sediment-water exchange. The TP vertical variability and speciation in the cores suggests a change in the sediment retention capacity, connected to the lake shift to more eutrophic conditions.

Keywords

Eutrophic lake Water budget Phosphorus speciation Phosphorus internal load Phosphorus dynamics Sediment 

Notes

Acknowledgement

This work was supported by Regione Piemonte and Società Canottieri Sirio. We are grateful to Dr. A. Defilippi (ARPA – Ivrea) for the P data of the water column 1 and to Dr. Allais for the cores sampling. A special thank to Sergio Cavallone for the help in finding and translating the Einstein’s paper.

References

  1. Allais, E. (2001). Studio geochimico delle acque e dei sedimenti di alcuni laghi piemontesi al fine di una ricostruzione paleoclimatica e paleoambientale regionale. Ph. D. Thesis. University of Torino.Google Scholar
  2. Baldi, E., & Pirocchi, L. (1939). L’arrossamento del lago Sirio. Natura, 30, 115–120.Google Scholar
  3. Boström, B., Andersen, J. M., Fleischer, S., & Jansson, M. (1988). Exchange of phosphorus across the sediment–water interface. Hydrobiologia, 170, 229–244.Google Scholar
  4. Boström, B., Jansson, M., & Forsberg, C. (1982). Phosphorus release from sediments. Archiv für Hydrobiologie Suplement, 18, 5–59.Google Scholar
  5. Boyle, J. (2004). A comparison of two methods for estimating the organic matter content of sediments. Journal of Paleolimnology, 31, 125–127.CrossRefGoogle Scholar
  6. Calderoni, A., & Marchetto, A. (1998). Stato delle conoscenze sulla situazione ambientale dei laghi piemontesi. Rapporto sulle attività previste dalla Convenzione tra la Regione Piemonte ed il CNR Istituto Italiano di Idrobiologia (internal report).Google Scholar
  7. Cambi, C., Dragoni, W., & Valigi, D. (2003). Water management in low permeability catchments and in times of climatic change: the case of the Nestore River (Western Central Italy). Physics and Chemistry of the Earth, 28, 201–208.Google Scholar
  8. Caraco, N. F., Cole, J. J., & Likens, G. E. (1993). Sulfate control of phosphorus availability in lakes – A test and reevaluation of Hasler and Einsele model. Hydrobiologia, 253, 275–280.CrossRefGoogle Scholar
  9. Carraro, F. (1992). Evoluzione plio-quaternaria. L'anfiteatro morenico di Ivrea.– Guide Geologiche Regionali, 3, 1, Società Geologica Italiana, 188–191.Google Scholar
  10. Christophoridis, C., & Fytianos, K. (2006). Conditions affecting the release of phosphorus from surface lake sediments. Journal of Environmental Quality, 35(4), 1181–1192.CrossRefGoogle Scholar
  11. Dragoni, W., & Valigi, D. (1994). Contributo alla stima dell'evaporazione dalle superfici liquide nell'Italia Centrale. Geologica. Romana, 30, 151–158.Google Scholar
  12. Einstein, A. (1926). Die Ursache der Mäanderbildung der Flussläufe und des sogenannten Baerschen Gesetzes. Naturwissenschaften, 14, 223–224.CrossRefGoogle Scholar
  13. EPA (2000). Nutrient criteria technical guidance manual. Lakes and reservoirs. EPA-822-B00-001, Environmental Protection Agency.Google Scholar
  14. Facchinelli, A., Magnoni, M., Perrone, U., & Sacchi, E. (2005). Post-depositional processes in lake sediments traced by heavy metals and radionuclides: A case study from Lake Sirio (Ivrea, Northern Italy). Materials and Geoenvironment, 52, 31–33.Google Scholar
  15. Franchi, A. (2003). Approccio multidisciplinare alla valutazione del bilancio idrico del lago Sirio. Thesis, University of Torino.Google Scholar
  16. Gächter, R., & Meyer, J. S. (1993). The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia, 253, 103–121.CrossRefGoogle Scholar
  17. Golterman, H. L. (1996). Fractionation of sediment phosphate with chelating compounds: A simplification, and comparison with other methods. Hydrobiologia, 335, 87–95.CrossRefGoogle Scholar
  18. Golterman, H. L. (2001). Phosphate release from anoxic sediments or 'What did Mortimer really write?'. Hydrobiologia, 450, 99–106.CrossRefGoogle Scholar
  19. Golterman, H. L. (2004). The Chemistry of phosphate and nitrogen compounds in sediments. Dordrecht: Kluwer.Google Scholar
  20. Gonsiorczyk, T., Casper, P., & Koschel, R. (1998). Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake District (Germany). Water Science and Technology, 37(3), 51–58.CrossRefGoogle Scholar
  21. Gonsiorczyk, T., Casper, P., & Koschel, R. (2001). Mechanisms of phosphorus release from the bottom sediment of the oligotrophic Lake Stechlin: Importance of the permanently oxic sediment surface. Archiv fur Hydrobiologie, 151(2), 203–219.Google Scholar
  22. Guardo, M. (1999). Hydrologic balance for a subtropical treatment wetland constructed for nutrient removal. Ecological Engineering, 12, 315–337.CrossRefGoogle Scholar
  23. Handy, M. R., Franz, L., Heller, F., Janott, B., & Zurbriggen, R. (1999). Multistage accretion and exhumation of the continental crust (Ivrea crustal section, Italy and Switzerland). Tectonics, 18, 1154–1177.CrossRefGoogle Scholar
  24. Hieltjes, A. H. M., & Lijklema, L. (1980). Fractionation of inorganic phosphates in calcareous sediments. Journal of Environmental Quality, 9, 405–407.CrossRefGoogle Scholar
  25. House, W. A., & Denison, F. H. (2000). Factors influencing the measurement of equilibrium phosphate concentrations in river sediments. Water Research, 34(4), 1187–1200.CrossRefGoogle Scholar
  26. Hupfer, M., Gächter, R., & Giovanoli, R. (1995). Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquatic Sciences, 57(4), 305–324.CrossRefGoogle Scholar
  27. Hupfer, M., & Lewandowski, J. (2005). Retention and early diagenetic transformation of phosphorus in Lake Arendsee (Germany) – Consequences for management strategies. Archiv für Hydrobiologie, 164(2), 143–167.CrossRefGoogle Scholar
  28. Hutchinson, , & Löffler, H. (1956). The thermal classification of lakes. Proceedings of the National Academy of Sciences of the United States of America, 42, 84–86.CrossRefGoogle Scholar
  29. ILEC/Lake Biwa Research Institute (Eds) (1988–1993). Survey of the State of the World's Lakes. Volumes I–IV. International Lake Environment Committee, Otsu and United Nations Environment Programme, Nairobi.Google Scholar
  30. Kaiserli, A., Voutsa, D., & Samara, C. (2002). Phosphorus fractionation in lake sediments – Lakes Volvi and Koronia, N. Greece. Chemosphere, 46(8), 1147–1155.CrossRefGoogle Scholar
  31. Kleeberg, A., & Dudel, G. E. (1997). Changes in extent of phosphorus release in a shallow lake (Lake Grosser Muggelsee; Germany, Berlin) due to climatic factors and load. Marine Geology, 139, 61–75.CrossRefGoogle Scholar
  32. Millennium Ecosystem Assessment (2005). Ecosystems and human well-being: Current state and trends, Volume 1. In R. M. Hassan, R. Scholes, & N. Ash (Eds.) Findings of the condition and trends working group of the millennium ecosystem assessment. Washington, DC: Island Press.Google Scholar
  33. Mortimer, C. H. (1941). The exchange of dissolved substances between mud and water in lakes I & II. Journal of Ecology, 29, 280–329.CrossRefGoogle Scholar
  34. Mortimer, C. H. (1942). The exchange of dissolved substances between mud and water in lakes III & IV. Journal of Ecology, 30, 147–201.CrossRefGoogle Scholar
  35. Mortimer, C. H. (1971). Chemical exchanges between sediments and water in the Great Lakes – Speculations on probable regulatory mechanisms. Limnology and Oceanography, 16, 387–404.CrossRefGoogle Scholar
  36. Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.CrossRefGoogle Scholar
  37. Nürnberg, G. K. (1988). Prediction of phosphorus release rates from total and reductant-soluble phosphorus in anoxic sediments. Canadian Journal of Fisheries and Aquatic Sciences, 45, 453–462.CrossRefGoogle Scholar
  38. OECD (1982). Eutrophication of waters. Monitoring, assessment and control. Paris: OECD.Google Scholar
  39. Perrone, U. (2006). Studio della dinamica del fosforo all’interfaccia acqua-sedimento in un lago eutrofico: il lago Sirio (Ivrea-TO). Ph. D. Thesis. University of Torino.Google Scholar
  40. Perrone, U., & Facchinelli, A. (2005). Phosphorus release from sediment in a small eutrophic Italian lake. Materials and Geoenvironment, 52, 302.Google Scholar
  41. Psenner, R., & Pukso, R. (1988). Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Archiv fur Hydrobiologie, 30, 43–59.Google Scholar
  42. Reitzel, K., Ahlgren, J., DeBrabandere, H., Waldebäck, M., Gogoll, A., Tranvik, L., et al. (2007). Degradation rates of organic phosphorus in lake sediment. Biogeochemistry, 82, 15–28.CrossRefGoogle Scholar
  43. Riva Roveda, C. (2000). Analisi geochimiche delle acque e dei sedimenti del lago Sirio (Ivrea). Thesis, University of Torino.Google Scholar
  44. Ruban, V., Lòpez-Sànchez, J. F., Pardo, P., Rauret, G., Muntau, H., & Quevauviller, P. H. (1999). Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. Journal of Environmental Monitoring, 1, 51–56.CrossRefGoogle Scholar
  45. Ruban, V., Lòpez-Sànchez, J. F., Pardo, P., Rauret, G., Muntau, H., & Quevauviller, P. H. (2001). Harmonized protocol and certified material for the determination of extractable contents of phosphorus in freshwater sediments-works. Fresenius Journal of Analytical Chemistry, 370, 224–228.CrossRefGoogle Scholar
  46. Sacchi, E., Facchinelli, A., Magnoni, M., Losana, M. C., Zoppi, U., & Fink, D. (2002). Radionuclides as tracers of sedimentary processes in lakes: A case study from Lake Sirio (Ivrea, Northern Italy). (paper presented at the International Conference on Radioactivity in the Environment, Principality of Monaco, CDRom publication), September.Google Scholar
  47. Sacchi, E., Riva Roveda, C., Facchinelli, A., Defilippi, A., Magnoni, M., & Allais E. (2001). Geochemical and mineralogical evidence of the recent trophic evolution of a small peri-alpine lake (Lake Sirio, Ivrea, Northern Italy. In: Cidu R. (Ed.) Water Rock Interaction WRI10, 2, 1131–1134, Balkema, Rotterdam.Google Scholar
  48. Schauser, I., Lewandowski, J., & Hupfer, M. (2003). Decision support for the selection of an appropriate in-lake measure to influence the phosphorus retention in sediments. Water Research, 37(4), 801–812.CrossRefGoogle Scholar
  49. Schmid, S. M. (1993). Ivrea zone and adjacent Southern Alpine Basement. In J. F. Raumer, & F. Neubauer (Eds.) Pre-mesozoic geology in the Alps (pp. 567–583). Berlin: Springer-Verlag.Google Scholar
  50. Schnoor, J. L. (1996). Environmental modelling; fate and transport of pollutants in water, air and soil. New York: Wiley.Google Scholar
  51. Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506(1–3), 135–145.CrossRefGoogle Scholar
  52. Thornthwaite, C. W., & Mather, J. R. (1955). The water balance. Publications in Climatology, VIII:1, (Centerton, New Jersey).Google Scholar
  53. Valderrama, J. C. (1977). Methods used by the Hydrographic Department of the National Board of Fisheries. Goteborg, Sweden.Google Scholar
  54. Valderrama, J. C. (1981). The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry, 10, 109–122.CrossRefGoogle Scholar
  55. Williams, J. D., Mayer, T., & Nriagu, J. O. (1980). Extractability of phosphorus from phosphate minerals common in soils and sediments. Soil Science Society of Americal Journal, 44, 462.CrossRefGoogle Scholar
  56. Zingg, A. (1983). The Ivrea and Strona–Ceneri zones (southern Alps, Ticino and N-Italy) – A review. Schweizerische Mineralogische und Petrographische Mitteilungen, 63, 361–392.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Dipartimento di Scienze Mineralogiche e PetrologicheUniversità degli Studi di TorinoTorinoItaly
  2. 2.Dipartimento di Scienze della TerraUniversità Degli Studi di PaviaPaviaItaly

Personalised recommendations