Water, Air, and Soil Pollution

, Volume 188, Issue 1–4, pp 297–309 | Cite as

Accumulation and Distribution of Heavy Metals in Scirpus americanus and Typha latifolia from an Artificial Lagoon in San Luis Potosí, México

  • Candy Carranza-Álvarez
  • Angel Josabad Alonso-Castro
  • María Catalina Alfaro-De La Torre
  • Ramón Fernando García-De La Cruz


The concentrations of Pb, Cd, Cr, Mn and Fe were evaluated in leaves, stem and root of the Scirpus americanus and Typha latifolia aquatic macrophytes, which were collected from Tanque Tenorio, an artificial lagoon highly polluted by municipal and industrial wastewater. Some S. americanus and T. latifolia plants were collected from four different sites within Tanque Tenorio. The sites were chosen regarding their proximity with the main channel discharging wastewater into the lagoon. The results showed that S. americanus and T. latifolia have the ability to extract Pb, Cd, Cr, Mn and Fe from their water surroundings; on the whole, the roots presented higher concentrations of heavy metals than the stem and the leaves. The highest accumulation of heavy metals was observed in plants growing at the site near the channel entering the lagoon. S. americanus accumulated more Pb, Cr, Mn and Fe than T. latifolia; Cd concentrations were comparably the same in both species. This study provides information in relation to aquatic plants growing in polluted waters, which accumulate heavy metals. These findings are of interest pertaining to the removal processes for treating aquatic systems with heavy metal content.


Heavy metals Accumulation Scirpus americanus Typha latifolia Tanque Tenorio 



This work was carried out with the financial support from Sistema de Investigación Miguel Hidalgo (SIHGO) no.2002020605. CCA was awarded a graduate fellowship from the Consejo Nacional de Ciencia y Tecnología (CONACYT) no.173383 and the SIHGO. AJAC was also granted with a fellowship from the SIGHO. We wish to express our gratitude to Secretaría de Ecología y Gestión Ambiental (SEGAM) and M.C. Joel Milán Navarro (Universidad Autónoma de San Luís Potosí) for his technical assistance.


  1. Aksoy, A., Demirezen, D., & Duman, F. (2005). Bioaccumulation, detection and analyses of heavy metal pollution in Sultan Marsh and its environment. Water Air and Soil Pollution, 164, 241–255.CrossRefGoogle Scholar
  2. Alfaro de la Torre, M. C. (1997). Contenu des métaux Cu, Pb, Cd et Zn dans les larves de l’insecte aquatique Chaoborus (Diptera). Rapport interne INRS-Eau Université du Quebec CA.Google Scholar
  3. Azcon-Bieto, J., & Talon, M. (1993). Fisiología y bioquímica vegetal pp. 537–553. McGraw-Hill: Editorial Interamericana.Google Scholar
  4. Bienfait, H. F. (1988). Mechanisms in Fe-efficiency reactions of higher plants. Journal of Plant Nutrition, 11, 605–629.CrossRefGoogle Scholar
  5. Breckle, C. W. (1991). Growth under heavy metals. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.) Plant roots: The hidden half (pp. 351–373). New York, NY: Marcel Dekker.Google Scholar
  6. Demirezen, D., & Aksoy, A. (2004). Accumulation of heavy metals in Typha angustifolia and Potamogeton pectinatus living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56, 685–696.CrossRefGoogle Scholar
  7. Godbold, D. L., & Hüttermann, A. (1985). Effect of zinc, cadmium and mercury on root elongation of Picea abies (Karst.) seedlings, and the significance of these metals to forest die-back. Environmental Pollution, 38, 375–381.Google Scholar
  8. Hozhina, E. I., Khramov, A. A., Gerasimov, P. A., & Kumarakov, A. A. (2001). Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. Journal of Geochemical Exploration, 74, 153–162.CrossRefGoogle Scholar
  9. Huerta-Díaz, M. A., Carignan, R., & Tessier, A. (1993). Measurement of trace metals associated with acid volatile sulfides and pyrite in organic freshwater sediments. Environmental Science and Technology, 27, 2367–2372.CrossRefGoogle Scholar
  10. Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32, 235–283.CrossRefGoogle Scholar
  11. Lytle, C. M., Lytle, F. W., Yang, N., Quian, J. H., Hansen, D., Zayed, A., & Terry, N. (1998). Reduction of Cr (VI) to Cr (III) by wetland plants: Potential for in situ heavy metal detoxification. Environmental Science and Technology, 32, 3087–3093.CrossRefGoogle Scholar
  12. Markert, B. (1992). Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetatio, 103, 1–30.Google Scholar
  13. Memon, A. R., Aktoprakligül, D., Zdemur, A., & Verti, A. (2001). Heavy metal accumulation and detoxification mechanisms in plants. Turkish Journal of Botany, 25, 111–121.Google Scholar
  14. Montante-Montelongo, A. D. (1998). Estudio geoquímico de metales traza en una laguna artificial de aguas residuales. MS thesis, Universidad Autónoma de San Luis Potosí, S.L.P., México.Google Scholar
  15. NOM-CCA-032-ECOL/1993 (Norma Oficial Mexicana). Diario Oficial de la Federación, 18 de Octubre de 1993.Google Scholar
  16. Núñez-Curiel, N. E. (2005). Comportamiento geoquímico de Mn, Fe, Ni y Pb en agua y sedimentos de una laguna artificial de aguas residuales. Ph.D. thesis Universidad Autónoma de San Luís Potosí.Google Scholar
  17. Parker, R. E. (1983). Introductory statistics for biology. London: Edward Arnold.Google Scholar
  18. Posadas-Ocampo, C., & Gascón-Orta, N. E. (2004). Determinación de metales pesados en sangre de especies de aves silvestres en el Tanque Tenorio. Reporte interno del proyecto SIGHO (2002020605). México: Universidad Autónoma de San Luis Potosí.Google Scholar
  19. Reddy, K. R., & Debusk, W. F. (1987). Plant nutrient storage capabilities. In K. R. Reddy, & W. H. Smith (Eds.) Aquatic plants for water treatment and resource recovery (pp. 337–359). Florida: Magnologia Publishing Inc. Orlando.Google Scholar
  20. Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Science of the Total Environment, 281, 87–98.CrossRefGoogle Scholar
  21. Sawidis, T., Chettri, M. K., Zachariadis, G. A., & Stratis, J. A. (1995). Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicology and Environmental Safety, 32, 73–80.CrossRefGoogle Scholar
  22. Sawidis, T., Stratis, J., & Zachariadis, G. (1991). Distribution of heavy metals in sediments and aquatic plants of the river Pinios (Central, Greece). Science of the Total Environment, 102, 261–266.CrossRefGoogle Scholar
  23. Schecher, W. D., & McAvoy, D. C. (1994). MINEQL+: A chemical equilibrium program for personal computers. User’s manual. Version 3.0. Environ. Res. Software, Hallowell, ME.Google Scholar
  24. Secretaria de Desarrollo Económico (SEDECO) (2006). Directorio de empresas que operan en las zonas y parques industriales de la ciudad de San Luís Potosí. San Luís Potosí, México. Available at:
  25. Secretaría de Gestión Ambiental (SEGAM) del Gobierno del Estado de San Luís Potosí. (1998). Available at: http://www.segam.gob.
  26. Shewry, P. R., & Peterson, P. J. (1974). The uptake and transport of chromium by Barley seedlings (Hordeum vulgare L.). Planta (Berl), 132, 209–214.Google Scholar
  27. Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods (8th ed.). The Iowa State University Press.Google Scholar
  28. Vardanyan, L. G., & Ingole, B. S. (2006). Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environment International, 32, 208–218.CrossRefGoogle Scholar
  29. Vargas-Olvera, M. C. (1999). Especiación de metales pesados en suelos regados con aguas residuales e industriales. MS thesis Universidad Autónoma de San Luís Potosí, México.Google Scholar
  30. Yan, N. D., Mackie, G. L., & Dillon, P. J. (1990). Cadmium concentrations at crustacean zooplankton at acidified and non acidified Canadian Shield lakes. Environmental Science and Technology, 24, 1367–1377.CrossRefGoogle Scholar
  31. Zayed, A., Suvarnalatha, G., & Terry, N. (1998). Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27, 715–721.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Candy Carranza-Álvarez
    • 1
  • Angel Josabad Alonso-Castro
    • 1
  • María Catalina Alfaro-De La Torre
    • 2
  • Ramón Fernando García-De La Cruz
    • 1
  1. 1.Plant Biochemistry LaboratoryUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Environmental Geochemistry LaboratoryCentro de Investigación y Estudios de Postgrado de la Facultad de Ciencias Químicas de la Universidad Autónoma de San Luis Potosí, SLPSan Luis PotosíMexico

Personalised recommendations