Water, Air, and Soil Pollution

, Volume 188, Issue 1–4, pp 247–260 | Cite as

Contamination of Urban Soils in an Area of Northern France Polluted by Dust Emissions of Two Smelters

  • Francis Douay
  • Christelle Pruvot
  • Helene Roussel
  • Henri Ciesielski
  • Herve Fourrier
  • Nicolas Proix
  • Christophe Waterlot


The contamination of 27 urban topsoils has been assessed around two lead and zinc smelters (Metaleurop Nord and Umicore) in the North of France. Eighteen trace elements have been analysed (Ag, As, Bi, Cd, Co, Cr, Cu, Hg, In, Ni, Pb, Sb, Se, Sn, Tl, Th, U and Zn). The investigation included the study of the vertical distribution of Cd, Pb and Zn as indicators of pollution. It was shown that Cd, In, Pb, Sb and Zn were major pollutants followed in lesser quantities by Ag, Bi, Cu and Hg. In addition, As, Ni, Se, Sn and Tl were present at levels slightly higher than regional agricultural values. The other elements (Co, Cr, Th and U) were at endogenous levels. The observations have highlighted the strong heterogeneity of the physico-chemical parameters of urban soils and the existence of heavy contamination of the under layers by Cd, Pb and Zn. A potential transfer of metals from the topsoil to the deeper layers and especially Cd and Zn, is not excluded. Indeed the soil rework is not the only factor explaining contamination level of the deeper layers of the studied soils. The comparison of the studied element concentrations in urban soils with nearby local agricultural values shows that the dust emission originating from the Metaleurop and Umicore smelters were not the only source of contamination. Thus a large contamination of the studied urban soils by Sb and In could be explained by domestic combustion of coal for heating.


Contamination Smelter Trace elements Urban soil Vertical distribution 



The authors wish to thanks the Nord Pas-de-Calais council, the French Ministry of Research, the European Regional Development Fund (FEDER) and the “Direction Régionale des Affaires Sanitaires et Sociales du Nord-Pas de Calais” and Lille Catholic University, both of whom contributed to their financial support.


  1. Baize, D. (1994). Teneurs totales en “métaux lourds” dans les sols français – premiers résultats du programme ASPITET. Le courrier de l’environnement, 1–11.Google Scholar
  2. Baize, D. (2001). Evaluer les contaminations diffuses en éléments traces dans les sols. In 5èmes rencontres de la fertilisation raisonnée et de l’analyse de terre : les nouveaux défis de la fertilisation raisonnée, pp. 281–295. Thevenet (COMIFER) et Jouberts (GEMAS) eds.Google Scholar
  3. Birke, M., & Rauch, U. (2000). Urban Geochemistry: Investigations in the Berlin Metropolitan Area. Environmental Geochemistry and Health, 22, 233–248.CrossRefGoogle Scholar
  4. Bityukova, L., Shogenova, A., & Birke, M. (2000). Urban geochemistry: A study of element distributions in the soils of Tallinn (Estonia). Environmental Geochemistry and Health, 22, 173–193.CrossRefGoogle Scholar
  5. Burt, R., Wilson, M. A., Mays, M. D., & Lee, C. W. (2003). Major and trace elements of selected pedons in the USA. Journal of Environmental Quality, 32, 2109–2121.Google Scholar
  6. Cambier, P. (2001). Synthèse de travaux portant sur la pollution environnementale autour de la friche industrielle de Mortagne-du-Nord. Contribution au développement des méthodes d’investigation et de gestion des sites contaminés. Rapport de Contrat entre le Ministère de l’Aménagement du Territoire et de l’Environnement (SRAE) et de l’INRA, 27 p.Google Scholar
  7. Chen, T. B., Wong, J. W. C., Zhou, H. Y., & Wong, M. H. (1997). Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environmental Pollution, 96, 61–68.CrossRefGoogle Scholar
  8. Chirenje, T., Ma, L. Q., & Zillioux, E. J. (2002). Determining arsenic distribution in urban soils: A comparison with nonurban soils. The Scientific World Journal, 2, 1404–1417.Google Scholar
  9. de Kimpe, C. R., & Morel, J.-L. (2000). Urban soil management: A growing concern. Soil Science, 165, 31–40.CrossRefGoogle Scholar
  10. Douay, F., Pruvot, C., Mazzuca, M., Howsam, M., Fourrier, H., de Saint Mahieu, A. S., & Waterlot, C. (2005). Cadmium, lead and zinc concentrations in soil and vegetables from kitchen gardens in urban and highly-contaminated areas of northern France: Evaluation of the risk of population exposure. In Proceedings of the 9th International FZK/TNO Conference on Soil-Water Systems, pp. 667–676, Bordeaux, France.Google Scholar
  11. Douay, F., Roussel, H., Pruvot, C., & Waterlot, C. (2006). Impact of a smelter closedown on metal contents of wheat cultivated in the neighbourhood. Environmental Science and Pollution Research, doi:10.1065/espr2006.12.366.
  12. DRIRE (2003). L’Industrie au Regard de l’Environnement.Ministère de l’Economie, des Finances et de l’Industrie. Google Scholar
  13. Fetzer, K., Enricht, E., Grenzius, R., Kubiniok, J., Schwartz, C., & Morel, J.-L. (1998). Garden soils in south-western Germany (Saarland) and north-eastern France (Lorraine). In Paper presented at the 16ème Congrès Mondial de Science du Sol, 1998 Montpellier, 20–26 août 1998, CD ROM, symposium no. 28, pp. 7.Google Scholar
  14. Frangi, J.-P., & Richard, D. (1997). Heavy metal soil pollution cartography in northern France. Science of the Total Environment, 205, 71–79.CrossRefGoogle Scholar
  15. Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis. Part 1 (2nd ed., pp. 383–411). Madison: American Society of Agronomy and Soil Science Society of Agronomy.Google Scholar
  16. Godin, P., Feinberg, M., & Ducauze, C. (1985). Modelling of soil contamination by airborne lead and cadmium around several emission sources. Environmental pollution. Series B, 10, 97–114.CrossRefGoogle Scholar
  17. Grelle, C., Fabre, M.-C., Leprêtre, A., & Descamps, M. (2000). Myriapod and isopod communities in soils contaminated by heavy metals in northern France. European Journal of Soil Science, 51, 425–433.CrossRefGoogle Scholar
  18. Gromaire, M. C., Chebbo, G., & Constant, A. (2002). Impact of zinc roofing on urban runoff pollutant loads: The case of Paris. Water Science and Technology, 45, 113–122.Google Scholar
  19. Imperato, M., Adamo, P., Naimo, D., Arienzo, M., Stanzione, D., & Violante, P. (2003). Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 124, 247–256.CrossRefGoogle Scholar
  20. Kabata Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. (2ème édition, p. 365). CRC Press, Boca Raton, FL.Google Scholar
  21. Lefevre, P. (1961). Contribution à l’étude de la capacité d’échange et des bases échangeables des sols non calcaires. I-Capacité d’échange. Discussion et choix des méthodes. Annales d’Agronomie, 12, 169–206.Google Scholar
  22. Linde, M., Bengtsson, H., & Öborn, I. (2001). Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden. Water, Air and Soil Pollution: Focus, 1, 83–101.CrossRefGoogle Scholar
  23. Luttringer, M., & de Cormis, L. (1979). La pollution par les métaux lourds à Noyelles-Godault et ses environs (Pas de Calais). INRA-Station d’étude de la pollution atmosphérique, 12 p et annexes.Google Scholar
  24. Machemer, S. D., & Hosick, T. J. (2004). Determination of soil lead variability in residential soil for remediation decision making. Water, Air and Soil Pollution, 151, 305–322.CrossRefGoogle Scholar
  25. Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229–243.CrossRefGoogle Scholar
  26. Nahmani, J., & Rossi, J. P. (2003). Soil macroinvertebrates as indicators of pollution by heavy metals. Comptes Rendus Biologies, 326, 295–303.CrossRefGoogle Scholar
  27. Norra, S., & Stüben, D. (2003). Urban soils. Journal of Soils and Sediments, 3, 230–233.CrossRefGoogle Scholar
  28. Paterson, E., Sanka, M., & Clark, L. M. (1996). Urban soils as pollutant sinks-a case study from Aberdeen, Scotland. Applied Geochemistry, 11, 129–131.CrossRefGoogle Scholar
  29. Peltola, P., & Astrom, M. (2003). Urban geochemistry: A multimedia and multielement survey of a small town in northern Europe. Environmental Geochemistry and Health, 25, 397–419.CrossRefGoogle Scholar
  30. Pruvot, C., Douay, F., Herve, F., & Waterlot, C. (2006). Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas. Journal of Soils and Sediments, 6, 215–220.CrossRefGoogle Scholar
  31. Purves, D. (1967). Contamination of urban garden soils with copper, boron, and lead. Plant and Soil, 26, 380–382.CrossRefGoogle Scholar
  32. Sterckeman, T., Douay, F., Fourrier, H., & Proix, N., (2002a). Référentiel pédo-géochimique du Nord-Pas de Calais. Report, Institut National de la Recherche Agronomique. Lille: Institut Supérieur d’Agriculture.Google Scholar
  33. Sterckeman, T., Douay, F., Proix, N., & Fourrier, H. (2000). Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environmental Pollution, 107, 377–389.CrossRefGoogle Scholar
  34. Sterckeman, T., Douay, F., Proix, N., Fourrier, H., & Perdrix, E. (2002b). Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water, Air and Soil Pollution, 135, 173–194.CrossRefGoogle Scholar
  35. Wagner, S. E., Peryea, F. J., & Filby, R. A. (2003). Antimony impurity in lead arsenate insecticide enhances the antimony content of old orchard soils. Journal of Environmental Quality, 32, 736–738.CrossRefGoogle Scholar
  36. Zeng, T. F., Sarofim, T. F., & Senior, C. L. (2001). Vaporization of arsenic, selenium and antimony during coal combustion. Combustion and Flame, 26, 1714–1724CrossRefGoogle Scholar
  37. Zhai, M., Kampunzu, H. A. B., Modisi, M. P., & Totolo, O. (2003). Distribution of heavy metals in Gaborone urban soils (Botswana) and its relationship to soil pollution and bedrock composition. Environmental Geology, 45, 171–180.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Francis Douay
    • 1
  • Christelle Pruvot
    • 1
  • Helene Roussel
    • 1
  • Henri Ciesielski
    • 2
  • Herve Fourrier
    • 1
  • Nicolas Proix
    • 2
  • Christophe Waterlot
    • 1
  1. 1.Laboratoire Sols et EnvironnementInstitut Supérieur d’AgricultureLille CedexFrance
  2. 2.Laboratoire d’Analyses des SolsInstitut National de la Recherche AgronomiqueArrasFrance

Personalised recommendations