Water, Air, and Soil Pollution

, Volume 188, Issue 1–4, pp 345–353 | Cite as

Carbon Monoxide in Ouagadougou, Burkina Faso – A Comparison between Urban Background, Roadside and In-traffic Measurements

  • Jenny Lindén
  • Sofia Thorsson
  • Ingegärd Eliasson
Article

Abstract

Spatial variations of Carbon Monoxide (CO) are examined in the urban environment of Ouagadougou, Burkina Faso. Focus is given on the variations between urban background, roadside and in-traffic measurements. Results show significant differences between the three methods where average in-traffic values were 2–3 times higher than average roadside values and 10–12 times higher than average background values. During traffic congestions these differences extended up to 6 and 20 times respectively. Results are discussed in relation to human exposure assessments and WHO guidelines.

Keywords

Spatial variations Air quality Urban Sub Saharan Africa Exposure assessment 

Notes

Acknowledgements

This project is financially supported by the Swedish International Development Cooperation Agency (Sida). We would also like to thank the Direction de la Météorologie National, Burkina Faso.

References

  1. Alm, S., Mukala, K., Tiittanen, P., & Jantunen, M. J. (2001). Personal carbon monoxide exposures of preschool children in Helsinki, Finland – Comparison to ambient air concentrations. Atmospheric Environment, 35, 6259–6266.CrossRefGoogle Scholar
  2. Baumbach, G., Vogt, U., Hein, K. R. G., Oluwole, A. F., Ogunsola, O. J., Olaniyi, H. B., et al. (1995). Air pollution in a large tropical city with a high traffic density – Results of measurements in Lagos, Nigeria. The Science of the Total Environment, 169, 25–31.CrossRefGoogle Scholar
  3. Bultynck, P. (1999). Etude de cas: Etude sur la qualité de l’air à Ouagadougou. Retreived March 15, 2007 from http://www.cleanairnet.org/ssa_fr/1444/articles-37244_pdf.pdf.
  4. CAI–SSA (2006). Report of the Regional Conference on Better Air Quality in Sub-Saharan African Cities. UNEP Headquarters, Nairobi, Kenya, 25–28 July 2006.Google Scholar
  5. di Marco, G., Kephalopoulos, S., Ruuskanen, J., & Jantunen, M. (2005). Personal carbon monoxide exposure in Helsinki, Finland. Atmospheric Environment, 39, 2697–2707.CrossRefGoogle Scholar
  6. Duci, A., Chaloulakou, A., & Spyrellis, N. (2003). Exposure to carbon monoxide in the Athens urban area during commuting. Science of the Total Environment, 309, 47–58.CrossRefGoogle Scholar
  7. European Environment Agency (2003). TERM 2003, 33 EEA 31 – Average age of the vehicle fleet.Google Scholar
  8. Fanou, L. A., Mobio, T. A., Creppy, E. E., Fayomi, B., Fustoni, S., Møller, P., et al. (2006). Survey of air pollution in Cotonou, Benin-air monitoring and biomarkers. Science of the Total Environment, 358, 85–96.CrossRefGoogle Scholar
  9. Georgoulis, L. B., Hänninen, O., Samoli, E., Katsouyanni, K., Künzli, N., Polanska, L., et al. (2002). Personal carbon monoxide exposure in five European cities and its determinants. Atmospheric Environment, 36, 963–974.CrossRefGoogle Scholar
  10. Gwilliam, K. (2003). Urban transport in developing countries. Transport Reviews, 23, 197–216.CrossRefGoogle Scholar
  11. Han, X., & Naeher, L. P. (2006). A review of traffic-related air pollution exposure assessment studies in the developing world. Environment International, 32, 106–120.CrossRefGoogle Scholar
  12. Jonsson, P. (2005). Urban climate and air quality in tropical cities. PhD thesis A98, Göteborg University, Sweden.Google Scholar
  13. Kousa, A., Oglesbyb, L., Koistinena, K., Kunzlib, N., & Jantunena, M. (2002). Exposure chain of urban air PM 2.5 – Associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the EXPOLIS-study. Atmospheric Environment, 36, 3031–3039.CrossRefGoogle Scholar
  14. Liard, R., Zureik, M., Le Moullec, Y., Soussan, D., Glorian, M., Grimfeld, A., et al. (1999). Use of personal passive samplers for measurement of NO2, NO, and O3: Levels in panel studies. Environmental Research, 81, 339–349.CrossRefGoogle Scholar
  15. Sathitkunarat, S., Wongwises, P., Pan-Aram, R., & Zhang, M. (2006). Carbon monoxide emission and concentration models for Chiang Mai urban area. Advances in Atmospheric Sciences, 23, 901–908.CrossRefGoogle Scholar
  16. Thorsson, S., & Eliasson, I. (2006). Passive and active sampling of benzene in different urban environments in Gothenburg, Sweden. Water, Air and Soil Pollution, 173, 39–56.CrossRefGoogle Scholar
  17. UNPD (2005). World Urbanization Prospects: The 2005 Revision.Google Scholar
  18. Upmanis, H., Eliasson, I., & Andersson-Sköld, Y. (2001). Case studies of the spatial variations of benzene and toluene concentrations in parks and adjacent built-up areas. Water, Air, and Soil Pollution, 129, 61–81.CrossRefGoogle Scholar
  19. Van Wijnen, J. H., Verhoeff, A. P., Jans, H. W., & Bruggen, M. (1995). The exposure of cyclists, car driver and pedestrians to traffic-related air pollutants. International Archives of Occupational and Environmental Health, 67, 187–193.Google Scholar
  20. Vellopoulou, A. V., & Ashmore, M. R. (1998). Personal exposures to carbon monoxide in the city of Athens: I. Commuters exposures. Environment International, 24, 713–720.CrossRefGoogle Scholar
  21. WHO (2004). Environmental Health Criteria 213: Carbon Monoxide, 2nd ed.Google Scholar
  22. Wittig, A. E., Anderson, N., Khlystov, A. Y., Pandis, S. N., Davidson, C., & Robinson, A. L. (2004). Pittsburgh air quality study overview. Atmospheric Environment, 38, 3107–3125.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jenny Lindén
    • 1
  • Sofia Thorsson
    • 1
  • Ingegärd Eliasson
    • 1
  1. 1.Urban Climate Group, Physical Geography, Earth Science CentreGöteborg UniversityGöteborgSweden

Personalised recommendations