Water, Air, and Soil Pollution

, Volume 188, Issue 1–4, pp 111–126 | Cite as

Mitigation of Diffuse Phosphorus Pollution during Rewetting of Fen Peat Soils: A Trans-European Case Study

  • R. MeissnerEmail author
  • P. Leinweber
  • H. Rupp
  • M. Shenker
  • M. I. Litaor
  • S. Robinson
  • A. Schlichting
  • J. Koehn


Intensive cultivation of fen peat soils (Eutric Histosols) for agricultural purposes, started in Europe about 250 years ago, resulting in decreased soil fertility, increased oxidation of peat and corresponding CO2-emissions to the atmosphere, nutrient transfer to aquatic ecosystems and losses in the total area of the former native wetlands. To prevent these negative environmental effects set-aside programs and rewetting measures were promoted in recent years. Literature results and practical experiences showed that large scale rewetting of intensively used agricultural Histosols may result in the mobilisation of phosphorus (P), its transport to adjacent surface waters and an accelerated eutrophication risk. The paper summarises results from an international European Community sponsored research project and demonstrates how results obtained at different scales and from different scientific disciplines were compiled to derive a strategy to carry out rewetting measures. A decision support system (DSS) for a hydrologically sensitive area in the Droemling catchment in north-eastern Germany was developed and is presented as a tool to regulate rewetting in order to control P release. It is demonstrated that additional laboratory experiments to identify essential processes of P release during rewetting and the site-specific management of the water table, the involvement of specific knowledge and experience of the stakeholders are necessary to develop an applicable DSS. The presented DSS is practically used to prevent freshwater resources from diffuse P pollution.


Agricultural watershed Land use change Assessment Measurement Phosphorus Histosol 



The authors acknowledge the financial support of project PROWATER by the European Communities (EVK1-1999-00212). We thank the Magdeburg Water Authority for kindly providing the Ohre River water quality data.


  1. Ausborn, R., Piezunka, T., & Scheffer, B. (1997). Zur Phosphatfreisetzung an einem staunassen Moormarschstandort. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 85, 201–204.Google Scholar
  2. Barrow, N. J. (1978). The description of phosphate adsorption curves. Journal of Soil Science, 29, 447–462.CrossRefGoogle Scholar
  3. Barrow, N. J., & Shaw, T. C. (1975). The slow reaction between soil and anions: 2. The effect of time and temperature on the decrease in phosphate concentration in the soil solution. Soil Science, 119, 176–177.Google Scholar
  4. Bedrock, C. N., Cheshire, M. V., Chudek, J. A., Fraser, A. R., Goodman, B. A., & Shand, C. A. (1995). Effect of pH on the precipitation of humic acid from peat and mineral soils on the distribution of phosphorus forms in humic and fulvic acid fractions. Communications in Soil Science and Plant Analysis, 26, 1411–1425.Google Scholar
  5. Berkheiser, V. E., Street, J. J., Rao, P. S. C., & Yuan, T. L. (1980). Partitioning of inorganic orthophosphate in soil–water systems. Critical Reviews in Environmental Control, 10, 179–224.CrossRefGoogle Scholar
  6. Brand-Klibanski, S., Litaor, M. I., & Shenker, M. (2007). Overestimation of P adsorption capacity in reduced soils: An artifact of typical batch adsorption experiments. Soil Science Society of America Journal, 71, 1128–1136.CrossRefGoogle Scholar
  7. Breeuwsma, A., & Silva, S. (1992). Phosphorus fertilization and environmental effects in The Netherlands and the Po region (Italy). Rep 57, Agric. Res. Dep. Winand Staring Center for Integrated Land, Soil and Water Research. (Wageningen, The Netherlands).Google Scholar
  8. Broll, G., Merbach, W., & Pfeiffer, E.-M. (2002). Wetlands in Central Europe: soil organisms, soil ecological processes and trace gas emissions. Berlin: Springer.Google Scholar
  9. Brümmer, G. (1974). Redoxpotentiale und Redoxprozesse von Mangan-, Eisen- und Schwefelverbindungen in hydromorphen Böden und Sedimenten. Geoderma, 12, 207–222.CrossRefGoogle Scholar
  10. Commission of the European Communities (1985). Soil map of the European Communities 1:1 000 000. Directorate-General for Agriculture. (Luxembourg: Office for Official Publications of the European Communities).Google Scholar
  11. De Datta, S. K., Biswas, T., & Charoenchamratcheep, K. (1989). Phosphorus requirements and management for lowland rice. Paper presented at the Symposium on Phosphorus Requirements for Sustainable Agriculture in Asia and Oceania, IRRI, pp. 307–323.Google Scholar
  12. De Mars, H., & Wassen, M. J. (1999). Redox potentials in relation to water levels in different mire types in The Netherlands and Poland. Plant Ecology, 140, 41–51.CrossRefGoogle Scholar
  13. Edwards, A. C., & Chambers, P. A. (2002). Quantifying nutrient limiting conditions in temperate river systems (pp. 477–493). In P. M. Haygarth, & S. C. Jarvis (Eds.) Agriculture, hydrology and water quality (pp. 477–493). Wallingford: CAB International.Google Scholar
  14. European Communities (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23. October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, L 327, 1–72.Google Scholar
  15. Fiedler, S. (1997). In-situ-Langzeitmessungen des Redoxpotentials in hydro-morphen Böden einer Endmoränenlandschaft im württembergischen Alpenvorland. Dissertation, University Hohenheim, Germany.Google Scholar
  16. Flynn, N., Kronvang, B., & Withers, P. (2002). Diffuse phosphorus export from micro-catchments (<100 km2): Questionnaire results. In B. Kronvang (Ed.) Diffuse phosphorus loss at catchment scale (pp. 7–12). Silkeborg: Cost Action 832.Google Scholar
  17. Gelbrecht, J., Lengsfeld, H., Pöthig, R., & Opitz, D. (2005). Temporal and spatial variation of phosphorus input, retention and loss in a small catchment of NE Germany. Journal of Hydrology, 304, 151–165.CrossRefGoogle Scholar
  18. Gibson, C. E. (1997). The dynamics of phosphorus in freshwater and marine environments. In H. Tunney, O. T. Carton, P. C. Brookes, & A. E. Johnston (Eds.) Phosphorus loss from soil to water (pp. 119–135). Wallingford: CAB International.Google Scholar
  19. Havens, K. J. (1997). The effect of vegetation on soil redox within a seasonally flooded forested system. Wetlands, 17, 237–242.CrossRefGoogle Scholar
  20. Hayward, D. O., & Trapnell, B. M. W. (1964). Chemisorption. London: Butterworth & Co. Ltd.Google Scholar
  21. Hedley, M. J., Steward, J. W. B., & Chauhan, B. S. (1982). Changes in inorganic and organic phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46, 970–976.CrossRefGoogle Scholar
  22. Hinedi, Z. R., Chang, A. C., & Lee, R. W. K. (1988). Mineralization of phosphorus in sludge-amended soils monitored by phosphorus-31-nuclear magnetic resonance spectroscopy. Soil Science Society of America Journal, 52, 1593–1596.CrossRefGoogle Scholar
  23. Ivanoff, D. B., Reddy, K. R., & Robinson, S. (1998). Chemical fractionation of organic phosphorus in selected Histosols. Soil Science, 163, 36–45.CrossRefGoogle Scholar
  24. Jarvie, H. P., & Withers, P. J. A. (2002). Phosphorus sampling, storage and analysis. In B. Kronvang (Ed.) Diffuse phosphorus loss at catchment scale pp. 16–20. Silkeborg: Cost Action 832.Google Scholar
  25. Kalbitz, K., Rupp, H., Meissner, R., & Braumann, F. (1999). Folgewirkungen der Renaturierung eines Niedermoores auf die Stickstoff-, Phosphor- und Kohlenstoffgehalte im Boden- und Grundwasser. Z. Kulturtechnik und Landentwicklung, 40, 22–28.Google Scholar
  26. Kölling, M. (2000). Comparison of different methods for redox potential determination in natural waters. In J. Schüring (Ed.) Redox: fundamentals, processes and applications (pp. 42–54). Berlin: Springer.Google Scholar
  27. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1382.CrossRefGoogle Scholar
  28. LAWA (Länderarbeitsgemeinschaft Wasser) (1998). Bewertung der Wasserbeschaffenheit von Fliessgewässern in der Bundesrepublik Deutschland - chemische Gewässergüteklassifikation. Berlin: Kulturbuchverlag.Google Scholar
  29. Leinweber, P., Lünsmann, F., & Eckardt, K.-U. (1997). Phosphorus sorption capacities and saturation degrees of soils in two regions with different livestock densities in Northwest Germany. Soil Use Management, 13, 82–89.CrossRefGoogle Scholar
  30. Leinweber, P., Meissner, R., Eckhardt, K.-U., & Seeger, J. (1999). Management effects on forms of phosphorus in soil and leaching losses. European Journal of Soil Science, 50, 413–424.CrossRefGoogle Scholar
  31. Leinweber, P., Turner, B. L., & Meissner, R. (2002). Phosphorus. In P. M. Haygart, & J. S. Jarvis (Eds.) Agriculture, hydrology and water quality (pp. 29–56). Wallingford: CABI Publishing.Google Scholar
  32. Litaor, M. I., Reichmann, O., Belzer, M., Auerswald, K., Nishri, A., & Shenker, M. (2003). Spatial analysis of phosphorus sorption capacity in a semiarid altered wetland. Journal of Environmental Quality, 32, 335–343.CrossRefGoogle Scholar
  33. Lookman, R., Jansen, K., Merckx, R., & Vlassak, K. (1996). Relationship between soil properties and phosphate saturation parameters. A transect study in northern Belgium. Geoderma, 69, 265–274.CrossRefGoogle Scholar
  34. Makarov, M., Guggenberger, G., Zech, W., & Alt, H. G. (1996). Organic phosphorus species in humic acids of mountain soils along a toposequence in Northern Caucasus. Zeitschrift fuÉr PflanzenernaÉhrung und Bodenkunde, 159, 467–470.Google Scholar
  35. Mansfeldt, T. (2003). In situ long-term redox potential measurements in a dyked marsh soil. Journal of Plant Nutrition and Soil Science, 166, 210–219.CrossRefGoogle Scholar
  36. Martin, H. W., Ivanoff, D. B., Graetz, D. A., & Reddy, K. R. (1997). Water table effects on Histosol drainage water carbon, nitrogen, and phosphorus. Journal of Environmental Quality, 26, 1062–1071.Google Scholar
  37. Meissner, R., & Leinweber, P. (Eds.) (2004). PROWATER: Prevention of diffuse water pollution with phosphorus from degraded and rewetted peat soils. Final report of an European Research Project. UFZ-Bericht Vol. 5. (Leipzig: UFZ).Google Scholar
  38. Meissner, R., Rupp, H., & Leinweber, P. (2003). Rewetting of fen soils and changes in water quality—Experimental results and further research needs. Journal of Water and Land Development, 7, 75–91.Google Scholar
  39. Newman, R. H., & Tate, K. R. (1980). Soil phosphorus characterization by 31P Nuclear Magnetic Resonance. Communications in Soil Science and Plant Analysis, 11, 835–842.CrossRefGoogle Scholar
  40. OECD (1982). Eutrophication of waters: Monitoring, assessment and control. (Paris: Organization for Economic Cooperation and Development)Google Scholar
  41. Otabbong, E., Leinweber, P., Schlichting, A., Meissner, R., Shenker, M., & Litaor, I., et al. (2004). Comparison of ammonium lactate, sodium bicarbonate and double calcium lactate methods for extraction of phosphorus from wetland peat soils. Acta Agriculturae Scandinavica, 54, 9–13.Google Scholar
  42. Ponnamperuma, F. N. (1972). The chemistry of submerged soils. Advances in Agronomy, 24, 29–96.CrossRefGoogle Scholar
  43. Renger, M., Wessolek, G., Schwärzel, K., Sauerbrey, R., & Siewert, C. (2002). Aspects of peat conservation and water management. Journal of Plant Nutrition and Soil Science, 165, 487–493.CrossRefGoogle Scholar
  44. Riehm, H. (1948). Arbeitsvorschrift zur Bestimmung der Phosphorsäure und des Kaliums nach Lactatverfahren. Z. Pflanzenernähr. Düng. Bodenkd., 40, 61–74.Google Scholar
  45. Robinson, J. A., Johnston, C. T., & Reddy, K. R. (1998). Combined chemical and 31P-NMR spectroscopic analysis of phosphorus in wetland organic soils. Soil Science, 163, 705–713.CrossRefGoogle Scholar
  46. Schlichting, A., Leinweber, P., Meissner, R., & Altermann, M. (2002). Sequentially extracted phosphorus fractions in peat-derived soils. Journal of Plant Nutrition and Soil Science, 165, 290–298.CrossRefGoogle Scholar
  47. Schmidt, B. (1998). Bedeutung der Redoxspannung für die hydromorphen Merkmale von Auenböden. Diploma thesis, University of Hamburg.Google Scholar
  48. Schoumans, O. F., & Groenendijk, P. (2000). Modelling soil phosphorus levels and phosphorus leaching from agricultural land in The Netherlands. Journal of Environmental Quality, 29, 111–116.Google Scholar
  49. Schwertmann, U. (1964). Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung und Bodenkunde, 105, 194–202.CrossRefGoogle Scholar
  50. Sharpley, A. N., & Rekolainen, S. (1997). Phosphorus in agriculture and its environmental implications. In H. Tunney, O. T. Carton, P. C. Brookes, & A. E. Johnston (Eds.) Phosphorus loss from soil to water (pp. 1–53). Wallingford: CAB International.Google Scholar
  51. Shenker, M., Seitelbach, S., Brand, S., Haim, A., & Litaor, M. I. (2005). Redox reactions and phosphorus release from re-flooded soils of an altered wetland. European Journal of Soil Science, 56, 515–525.CrossRefGoogle Scholar
  52. Stookey, L. L. (1970). Ferrozine—A new spectrophotometric reagent for iron. Analytical Chemistry, 42, 779–781.CrossRefGoogle Scholar
  53. Stolt, M. H., Genthner, M. H., Daniels, W. L., Groover, V. A., Nagle, S., & Haering, K. C. (2000). Comparison of soil and other environmental conditions in constructed and adjacent palustrine reference wetlands. Wetlands, 20, 671–683.CrossRefGoogle Scholar
  54. Willett, I. R. (1979). The effects of flooding for rice culture on soil chemical properties and subsequent maize growth. Plant Soil, 52, 373–383.CrossRefGoogle Scholar
  55. Zak, D., Gelbrecht, J., & Steinberg, C. E. W. (2004). Phosphorus retention at the redox interface of peatlands adjacent to surface waters in northeast Germany. Biogeochemistry, 70, 357–368.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • R. Meissner
    • 1
    Email author
  • P. Leinweber
    • 2
  • H. Rupp
    • 1
  • M. Shenker
    • 3
  • M. I. Litaor
    • 4
  • S. Robinson
    • 5
  • A. Schlichting
    • 6
  • J. Koehn
    • 7
  1. 1.Department of Soil Physics, Research Station FalkenbergHelmholtz Centre for Environmental Research-UFZFalkenbergGermany
  2. 2.Agricultural and Environmental Faculty, Institute of Soil Science and Plant NutritionUniversity of RostockRostockGermany
  3. 3.Faculty of Agricultural, Food and Environmental Quality SciencesThe Hebrew University of JerusalemRehovotIsrael
  4. 4.Department of Environmental SciencesTel-Hai Academic CollegeUpper GalileeIsrael
  5. 5.Department of Soil ScienceSchool of Human and Environmental SciencesWhiteknightsReadingUK
  6. 6.Steinbeis-Transferzentrum Soil BiotechnologyGroz LüsewitzGermany
  7. 7.HeiligenhagenGermany

Personalised recommendations