Water, Air, and Soil Pollution

, Volume 186, Issue 1–4, pp 167–181 | Cite as

Ozone Sensitivity Differences in Five Tomato Cultivars: Visible Injury and Effects on Biomass and Fruits

  • E. CalvoEmail author
  • C. Martin
  • M. J. Sanz


Five tomato cultivars (Nikita, Ailsa Craig, Moneymaker, UC 82 L and Piedmont) were exposed in open-top chambers to three ozone treatments: charcoal-filtered air (F); non-filtered air (NF); and non-filtered air plus 70 ppb ozone (NF+, 8 h, 133 days). Ozone-specific visible symptoms were recorded for all cultivars in the NF and NF+ treatments. All cultivars showed a reduction of root biomass in the NF+ treatment, root-biomass reductions were also observed in the NF treatment in Nikita (29%) and UC 82 L (33%). Four cultivars from the NF+ treatment showed reductions in aboveground dry biomass (25–50%). The sensitive cultivar Nikita also decreased its aboveground dry biomass (28%) at the end of crop cultivation in the NF treatment. Crop production showed generalized reductions in the total number of ripe and unripe fruits in the NF+ treatment (53–73%), with Nikita presenting a 24% decrease in the total number of ripe fruits in the NF treatment as well. A decreased ripeness rate was detected in all cultivars in NF+ and in three cultivars in the NF treatment (Nikita, Moneymaker and Piedmont). The effect of ozone on total crop production (kg m−2) was more important in the early harvest (50–63%) than in the late harvest. The ozone doses in the NF+ treatment affected fruit quality in all cultivars with the exception of Piedmont. Nikita and Ailsa Craig also showed fruit quality changes in the NF treatment. Nikita seems to be an ozone-sensitive cultivar, UC 82 L and Piedmont are more ozone-tolerant and the other two cultivars are in an intermediate position.


Biomass Crop production Fruit quality Ozone Tomato Visible injury 



This article is based on a study that formed part of the European project TOMSTRESS (Engineering tomato against environmental stress FAIR5-CT97-3493). It was also funded by the Spanish National Commission on Science and Technology (AGF1998-1600-CE). Special thanks to the Generalitat Valenciana and Bancaixa for their continuous support of the Fundación CEAM. José Martín, owner of “La Peira” farm, is also acknowledged for providing the facilities to develop our work.


  1. Andersen, C. P. (2003). Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytologist, 157, 213–228.CrossRefGoogle Scholar
  2. Bermejo, V. (2002). Efectos del ozono sobre la producción y la cantidad de frutos de Lycopersicum sculentum. Modulación por diversos factores ambientales. Ph.D. thesis, Universidad Autónoma de Madrid.Google Scholar
  3. Black, V. J., Black, C. R., Roberts, J. A., & Stewart, C. A. (2000). Impact of ozone on the reproductive development of plants. New Phytologist, 147, 421–447.CrossRefGoogle Scholar
  4. Brewer, R. F. (1986). The effects of ozone and SO2 on processing tomato yields and quality. California Air Resources Board (Eds.), Final Report on ARB Contract A4-071-33.Google Scholar
  5. Calatayud, A., & Barreno, E. (2000). Foliar spraying with zineb increases fruit productivity and alleviates oxidative stress in two tomato cultivars. Photosynthetica, 38, 149–154.CrossRefGoogle Scholar
  6. Calatayud, A., & Barreno, E. (2001). Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environmental Pollution, 115, 283–289.CrossRefGoogle Scholar
  7. Cooley, D. R., & Manning, W. J. (1987). The impact of ozone on assimilate partitioning in plants: A review. Environmental Pollution, 47, 95–113.CrossRefGoogle Scholar
  8. Cosima, B., Wiese, B., & Pell, E. J. (2003). Oxidative modification of the cell wall in tomato plants exposed to ozone. Plant Physiology and Biochemistry, 41, 375–382.CrossRefGoogle Scholar
  9. Crisosto, C. H., Retzlaff, W. A., Williams, L. E., De Jong, T. M., & Zoffoli, J. P. (1993). Postharvest performance evaluation of plum (Prunus salicina Lindel.,“Casselman”) fruit grown under three ozone concentrations. Journal of the American Society for Horticultural Science, 118, 497–502.Google Scholar
  10. Cuartero, J. (2001). Tomate para consumo en fresco. In Sociedad Española de Ciencias Hortícolas (SECH) (Eds.), La Horticultura Española (pp. 233–237). Madrid: Mundi-Prensa.Google Scholar
  11. De Temmerman, L., Legrand, G., & Vandermeiren, K. (2007). Effects of ozone on sugar beet grown in open-top chambers. European Journal of Agronomy, 26, 1–9.CrossRefGoogle Scholar
  12. Drogoudi, P. D., & Ashmore, M. R. (2000). Does elevated ozone have differing effects in flowering and deblossomed strawberry? New Phytologist, 147, 561–569.CrossRefGoogle Scholar
  13. Fumagalli, I., Gimeno, B. S., Velissariou, D., De Temmerman, L., & Mills, G. (2001). Evidence of ozone-induced adverse effects on crops in the Mediterranean region. Atmospheric Environment, 35, 2583–2587.CrossRefGoogle Scholar
  14. Gimeno, B. S., Bermejo, V., Reinert, R. A., Zheng, Y. B., & Barnes, J. D. (1999). Adverse effects of ambient ozone on watermelon yield and physiology at a rural site in Eastern Spain. New Phytologist, 144, 245–260.CrossRefGoogle Scholar
  15. Grantz, D. A., & Farrar, C. A. (1999). Acute exposure to ozone inhibits rapid carbon translocation from source leaves of pima cotton. Journal of Experimental Botany, 50, 1253–1262.CrossRefGoogle Scholar
  16. Guidi, L., Degl’Innocenti, E., Genovesi, S., & Soldatini, G. F. (2004). Photosynthetic process and activities of enzymes involved in the phenylpropanoid pathway in resistant and sensitive genotypes of Lycopersicon esculentum L. exposed to ozone. Plant Science, 168, 153–160.CrossRefGoogle Scholar
  17. Hacour, A., Craigon, J., Vandermeiren, K., Ojanpera, K., Pleijel, H., Danielsson, H., et al. (2002). CO2 and ozone effects on canopy development of potato crops across Europe. European Journal of Agronomy, 17, 257–272.CrossRefGoogle Scholar
  18. Hao, X., Hale, B. A., Ormrod, D. P., & Papadopoulos, A. P. (2000). Effects of pre-exposure to ultraviolet-B radiation on responses of tomato (Lycopersicon esculentum cv. New Yorker) to ozone in ambient and elevated carbon dioxide. Environmental Pollution, 110, 217–224.CrossRefGoogle Scholar
  19. Hassan, I. A., Bender, J., & Weigel, H. J. (1999). Effects of ozone and drought stress on growth, yield and physiology of tomatoes (Lycopersicon esculentum Mill. Cv. Baladey). Gartenbauwissenschaft, 64, 152–157.Google Scholar
  20. Hill, A. C., Heggestad, H. E., & Linzon, S. (1970). Ozone. In J. S. Jacobson & A. C. Hill (Eds.) Recognition of air pollution injury to vegetation: A pictorial atlas (pp. B1–B22). Pittsburg, PA: Air Pollution Control Association.Google Scholar
  21. Jimenez, A., Calvo, E., Martín, C., Porcuna, J. L., & Sanz, M. J. (2001). Estudio de la interacción entre el ozono y el desarrollo de las virosis en el cultivo del tomate. Agricola Vergel, 231, 141–150.Google Scholar
  22. Karlsson, P. E., Sellden, G., & Pleijel, H. (2003). Establishing ozone critical levels. II. UNECE Workshop Summary Report, Göteborg University.Google Scholar
  23. Khan, M. R., & Khan, M. W. (1997). Effects of the root-knot nematode, Meloidogyne incognita, on the sensitivity of tomato to sulfur dioxide and ozone. Environmental and Experimental Botany, 38, 117–130.CrossRefGoogle Scholar
  24. Khan, M. R., & Khan, M. W. (1999). Effects of intermittent ozone exposures on powdery mildew of cucumber. Environmental and Experimental Botany, 42, 163–171.CrossRefGoogle Scholar
  25. Langebartels, C., Wohlgemuth, H., Kschieschan, S., Grün, S., & Sandermann, H. (2002). Oxidative burst and cell death in ozone-exposed plants. Plant Physiology and Biochemistry, 40, 567–575.CrossRefGoogle Scholar
  26. Millan, M., Mantilla, E., Salvador, R., Carratalá, A., Sanz, M. J., Alonso, L., et al. (2000). Ozone cycles in the Western Mediterranean Basin: Interpretation of monitoring data in complex coast terraoin. Journal of Applied Meteorology, 39, 487–508.CrossRefGoogle Scholar
  27. Millan, M. M., Salvador, R., Mantilla, E., & Kallos, G. (1997). Photo-oxidant dynamics in the western Mediterranean in summer: Results from European research projects. Journal of Geophysical Research, 102, 8811–8823.CrossRefGoogle Scholar
  28. Mills, G., Holland, M., Buse, A., Cinderby, S., Hayes, F., & Emberson, L. D. (2003). Introducing response modifying factors into a risk assessment for ozone effects on crops in Europe. In G. P. Karlsson, G. Sellden, & H. Pleijel (Eds.), Establishing ozone critical levels II. UNECE Workshop Report. IVL report B 1523 (pp. 74–88). Gothenburg, Sweden: Swedish Environmental Research Institute.Google Scholar
  29. Moeder, W., Barry, C. S., Tauriainen, A. A., Betz, C., Tuomainen, J., Utriainen, M., et al. (2002). Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiology, 130, 1918–1926.CrossRefGoogle Scholar
  30. Nakajima, N., Matsuyama, T., Tamaoki, M., Saji, H., Aono, M., Kubo, A., et al. (2001). Effects of ozone exposure on the gene expression of ethylene biosynthetic enzymes in tomato leaves. Plant Physiology and Biochemistry, 39, 993–998.CrossRefGoogle Scholar
  31. Olszyk, D. M., & Wise, C. (1997). Interactive effects of elevated CO2 and O3 on rice and flacca tomato. Agriculture, Ecosystems and Environment, 66, 1–10.CrossRefGoogle Scholar
  32. Oshima, R. J., Poe, M. P., Braegelman, P. K., Baldwin, D. W., Van Way, V., & Taylor, O. C. (1977). Reduction of tomato fruit size and yield by ozone. Journal of American Society for Horticultural Sciences, 102, 289–293.Google Scholar
  33. Pell, E. J., Pearson, N. S., & Vinten-Johansen, C. (1988). Qualitative and quantitative effects of ozone and/or sulfur dioxide on field-grown potato plants. Environmental Pollution, 53, 171–186.CrossRefGoogle Scholar
  34. Pirker, K. F., Reichenauer, T., Pascual, E. C., Kiefer, S., Soja, G., & Goodman, B. A. (2003). Steady state levels of free radicals in tomato fruit exposed to drought and ozone stress in a field experiment. Plant Physiology and Biochemistry, 41, 921–927.CrossRefGoogle Scholar
  35. Pleijel, H., Norberg, P. A., Sellden, G., & Skarby, L. (1999). Tropospheric ozone decreases biomass production in radish plants (Raphanus sativus) grown in rural south-west Sweden. Environmental Pollution, 106, 143–147.CrossRefGoogle Scholar
  36. Reinert, R. A., Tingey, D. T., & Carter, H. C. (1972). Sensitivity of tomato cultivars to ozone. Journal of American Society for Horticultural Sciences, 97, 149–151.Google Scholar
  37. Ribas, A., & Peñuelas, J. (2000). Effects of ethylene diurea as a protective antiozonant on beans (Phaseolus vulgaris Cv Lit) exposed to different tropospheric ozone doses in Catalonia (NE Spain). Water, Air, and Soil Pollution, 117, 263–271.CrossRefGoogle Scholar
  38. Sanz, M. J., Calatayud, V., & Sanchez, G. (2007b). Measures of ozone concentrations using passive sampling in forests of South Western Europe. Environmental Pollution, 145, 620–628.CrossRefGoogle Scholar
  39. Sanz, M. J., & Millan, M. M. (1998). The dynamics of aged airmasses and ozone in the western mediterranean: relevance to forest ecosystems. Chemosphere, 36, 1089–1094.CrossRefGoogle Scholar
  40. Sanz, M. J., Porcuna, J. L., Calvo, E., & Martin, C. (2002). Artichoke cultivars (var. “Blanca de Tudela”) under elevated ozone concentrations. TheScientificWorld, 2, 811–817.CrossRefGoogle Scholar
  41. Sanz, M. J., Sánchez, G., Calatayud, V, Minaya, M. T., & Cerveró, J., (2001). La Contaminación Atmosférica en los bosques. Guía para la identificación de daños visibles causados por ozono. Madrid.Google Scholar
  42. Sanz, M. J., Sanz, F., Calatayud, V., & Sánchez-Peña, G. (2007a). Ozone in Spain’s National parks and protected forests. TheScientificWorld, 7(S1), 67–77.Google Scholar
  43. Schenone, G., Botteschi, G., Fumagalli, I., & Montinaro, F. (1992). Effects of ambient air pollution in open-top chambers on bean (Phaseolus vulgaris L.). I. Effects on growth and yield. New Phytologist, 122, 689–697.CrossRefGoogle Scholar
  44. Shrestha, A., & Grantz, D. A. (2005). Ozone impacts on competition between tomato and yellow nutsedge above- and below-ground effects. Crop Science, 45, 1587–1595.CrossRefGoogle Scholar
  45. Sokal, R. R., & Rohlf, F. J. (1994). Biometry. New York: Freeman.Google Scholar
  46. Temple, P. J. (1990). Growth and yield response of procesing tomato (Lycopersicon sculentum Mill.) cultivars to ozone. Environmental and Experimental Botany, 30, 283–291.CrossRefGoogle Scholar
  47. Tingey, D. T., Rodecap, K. D., Lee, E. H., Hogsett, W. E., & Gregg, J. W. (2002). Pod development increases the ozone sensitivity of Phaseolus vulgaris. Water, Air, and Soil Pollution, 139, 325–341.CrossRefGoogle Scholar
  48. Tuomainen, J., Betz, C., Kangasjarvi, J., Ernst, D., Yin, Z. H., Langebartels, C., et al. (1997). Ozone induction of ethylene emission in tomato plants: Regulation by differential accumulation of transcripts for the biosynthetic enzymes. Plant Journal, 12, 1151–1162.CrossRefGoogle Scholar
  49. Wohlgemuth, K., Mittelstrass, S., Kschieschan, J., Bender, J., Weigel, H. J, Overmyer, K., et al. (2002). Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone H. Plant Cell and Environment, 25, 717–726.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Fundación C.E.A.M.Charles R. Darwin 14 Parc TecnològicPaternaSpain

Personalised recommendations