Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Water-Soluble Ions and Trace Metals in Airborne Particles Over Urban Areas of the State of São Paulo, Brazil: Influences of Local Sources and Long Range Transport

  • 305 Accesses

  • 28 Citations


The atmosphere over Brazilian cities is influenced by a variety of emissions sources. In this study, aerosol collection and back-trajectory analysis were used to determine the influence of local and remote sources. Aerosols were collected at three locations within the state of São Paulo: one megacity and two cities in which sugar cane burning in the surroundings is observed. We quantified the major water-soluble inorganic ions and trace metals. As expected, vehicle emissions influenced the atmosphere of the megacity heavily, and sugar cane burning influenced that of the other locations. During the period of this experiment the back-trajectory analysis revealed that air masses are transported into the state from the northeast of Brazil, where biomass burning occurs. Multivariate statistical analysis revealed that the two principal components account for 48.5% of the total data variance. We conclude that local sources have a strong impact on the concentrations of particulate matter and pollutants. Remote sources also contribute to the concentrations of aerosol pollutants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Andrade, F., Orsini, C., & Maenhaut, W. (1994). Relation between aerosol sources and meteorological parameters for inhalable atmospheric in São Paulo City, Brazil. Atmospheric Environment, 28, 2307–2315.

  2. Allen, A. G., Cardoso, A. A., & Rocha, G. O. (2004). Influence of sugar cane burning on aerosol soluble ion composition in Southeastern Brazil. Atmospheric Environment, 38, 5025–5038.

  3. Allen, A. G., Nemitz, E., Shi, J. P., Harrison, R. M., & Greenwood, J. C. (2001). Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmospheric Environment, 35, 4581–4591.

  4. Blume, H. P. (1992). Handbuch des Bodenschutzes. Edit. Ecomed. (2a.edn. pp. 269).

  5. Carvalho-Oliveira, R., Pozo, R. M. K., Lobo, D. J. A., Lichtenfels, A. J. F. C., Martins-Junior, H. A., Bustilho, J. O. V., et al. (2005). Diesel Emissions significantly influence composition and mutagenicity of ambient particles: a case study in São Paulo, Brazil. Environmental Research, 98, 1–7.

  6. Castanho A. D. A., & Artaxo, P. (2001). Wintertime and summertime São Paulo aerosol source apportionment study. Atmospheric Environment, 35, 4889–4902.

  7. CETESB. (2005). Report on the air quality in the Metropolitan Region of São Paulo: Report series. In Portuguese. Available at

  8. CETESB. (2006). Report on the air quality in the Metropolitan Region of São Paulo: Report series. In Portuguese. Available at

  9. Chester, R., Nimmo, M., Fones, G. R., Keyse, S., & Zhang, Z. (2000). Trace metal chemistry of particulate aerosols from the UK mainland coastal rim of the NE Irish Sea. Atmospheric Environment, 34, 949–958.

  10. Claxton, L. D., Matthew, P. P., & Warren, S. H. (2004). The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutation Research, 567, 347–395.

  11. Fang, G., Chang, C., Wu, Y., Wang, V., Fu, P., Yang, D., et al. (2000). The study of fine and coarse particles, and metallic elements for the daytime and night-time in a suburban area of central Taiwan, Taichung. Chemosphere, 41, 639–644.

  12. Finlayson-Pitts, B., & Pitts, J. N., Jr (2000). Upper and lower atmosphere. Theory, experiments and applications (p. 385). Academic.

  13. Ghauri, B. M., Mirza, M. I., Richter, R., Dutkrewicz, V. A., Rusheed, A., Han, A. R., et al. (2001). Composition of aerosols and cloud water at a remote mountain site (2.8 km) in Pakistan. Global Change Science, 3, 51–63.

  14. Graham, B., Falkovich, A. H., Rudich, Y., Maenhaut, W., Guyon, P., Andreae, M. O. (2004). Local and regional contributions to the atmospheric aerosol over Tel Aviv, Israel: A case study using elemental, ionic and organic tracers. Atmospheric Environment, 38, 1593–1604.

  15. Jacobson, M. Z. (2002). Atmospheric pollution. History, science, and regulation (1st edn.). United Kingdom: Cambridge University Press.

  16. Lara, L. B. L. S., Artaxo, P., Martinelli, L. A., Victoria, R. L., Camargo, P. B., Krusche, A., et al. (2001). Chemical composition of rainwater and anthropogenic influences in the Piracicaba River Basin, Southeastern Brazil. Atmospheric Environment, 35, 4937–4945.

  17. Magalhães, D., Bruns, R. E., & Vasconcellos, P. C. (2007). Hidrocarbonetos Policíclicos Aromáticos como traçadores de queima de cana de açúcar. Uma abordagem estatística. Química Nova, 30(3), 577–581.

  18. Miranda, R. M., Andrade, M. F., Worobiec, A., & Grieken, R. (2002). Characterization of aerosol particles in the São Paulo metropolitan area. Atmospheric Environment, 36, 345–352.

  19. Montero, L., Vasconcellos, P. C., Souza, S. R., Pires, M. A. F., Sanchez-Ccoyolo, O. R., Andrade, M. F., et al. (2001). Measurements of atmospheric carboxylic acids and carbonyl compounds in São Paulo City, Brazil. Environment Science and Technology, 35, 3071–3081.

  20. Mouli, P. C., Mohan, S. V., & Reddy, S. J. (2003). A study on major inorganic ion composition of atmospheric aerosols at Tirupati. Journal of Hazardous Materials, B96, 217–228.

  21. Rocha, G. O, Franco, A., Allen, A. G., & Cardoso, A. A. (2003). Sources of atmospheric acidity in an agricultural-industrial region of São Paulo State, Brazil. Journal of Geophysical Research, 108(D7) art. no. 4207.

  22. Sanchez-Ccoyllo, O. R., & Andrade, M. F. (2002). The influence of meteorological conditions on the behavior of pollutants concentrations in São Paulo. Environmental Pollution, 116, 257–263.

  23. Sanchez-Ccoyllo, O. R., Silva Dias, P. L., Andrade, M. F., & Freitas, S. R. (2006a). Determination of O3, CO and PM10 transport in the metropolitan area of São Paulo, Brazil through synoptic scale analysis of back trajectories. Meteorology and Atmospheric Physics, 92, 83–93.

  24. Sanchez-Ccoyllo, O. R., Ynoue, R. Y., Martins, L. D., & Andrade, M. F. (2006b). Impact of ozone precursors, limitation and meteorological variables on ozone concentrations in São Paulo, Brazil. Atmospheric Environment, 40, S552–S562.

  25. Sathrugnan, K., & Balasubramanian, R. (2005). Evaluation of a microwave-assisted extraction technique for determination of water-soluble inorganic species in urban airborne particulate matter. Analytical and Bioanalytical Chemistry, 381, 1604–1608.

  26. Sato, M. I., Valent, G. U., Coimbrão, C. A., Coelho, M. C., Sanchez, P. S., Alonso, C. D., et al. (1995). Mutagenicity of airborne particulate organic material from urban and industrial areas of São Paulo, Brazil. Mutation Research, 335, 317–330.

  27. Seinfeld, J., & Pandis, S. N. (1998). Atmospheric chemistry and physics: From air pollution to climate change. Wiley.

  28. Simoneit, B. R. T. (2002). Biomass burning-a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry, 17, 129–162.

  29. Sorensen, M., Autruo, H., Moller, P., Hertel, O., Jensen, S. S., Vinzents, P., et al. (2003). Linking exposure to environmental pollutants with biological effects. Mutation Research, 544, 255–271.

  30. Statistica for Windows, Statsoft, Tulsa, OK, USA, 1999.

  31. Swami, K., Judd, C. D., Orsini, J., Yang, K. X., & Husain, L. (2001). Microwave assisted digestion of atmospheric aerosol samples followed by inductively coupled plasma mass spectrometry determination of trace elements. Fresenius’ Journal of Analytical Chemistry, 369, 63–70.

  32. Vasconcellos, P. C., Carvalho, L. R. F., & Pool, C. (2005). Volatile organic compounds inside urban tunnels of São Paulo city, Brazil. Journal of the Brazilian Chemical Society, 7(6), 1.

  33. Wilson, J. G., Kinghan, S., & Slurman, A. P. (2006). Intraurban variations of PM10 air pollution in Christchurch, New Zealand: Implications for epidemiological studies. Science of the Total Environment, 367, 559–572.

  34. Yamasoe, M. A., Artaxo, P., Miguel, A. H., & Allen, A. G. (2000). Chemical composition of aerosol particles from direct emissions of vegetation fires in teh Amazon Basin: water-soluble species and trace elements. Atmospheric Environment, 34, 1641–1653.

  35. Ynoue, R. Y., & Andrade, M. F. (2004). Size-resolved mass balance of aerosol particles over the Sao Paulo metropolitan area of Brazil. Aerosol Science and Technology, 38(S2), 52–62.

Download references


This study received financial support in the form of grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Foundation for the Support of Research in the state of São Paulo; project #2001-01763-0). We thank Dr. Luiz R. Angelocci for thelogistical assistance provided.

Author information

Correspondence to Pérola C. Vasconcellos.

Additional information

Capsule: Brazil is the largest user of alternative fuels, like alcohol and natural gas, and is developing the implementation of bio-diesel for heavy duty fleet in a large scale. These different fuels can impact negatively the air quality in a way not yet understood. Data presented here is not only of local interest, but can supply information regarding the impact of different fuels, biomass burning and air transport in the atmospheric chemistry.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vasconcellos, P.C., Balasubramanian, R., Bruns, R.E. et al. Water-Soluble Ions and Trace Metals in Airborne Particles Over Urban Areas of the State of São Paulo, Brazil: Influences of Local Sources and Long Range Transport. Water Air Soil Pollut 186, 63–73 (2007).

Download citation


  • Urban atmosphere
  • Air pollution
  • Inorganic compounds
  • Atmospheric chemistry
  • Pollutants transport