Advertisement

Water, Air, and Soil Pollution

, Volume 186, Issue 1–4, pp 15–28 | Cite as

Spatial and Temporal Variability in Dissolved Inorganic Nitrogen Fluxes at the Sediment–Water Interface in Lake Illawarra, Australia

  • Wenchuan Qu
  • R. J. Morrison
  • R. J. West
  • Chenwei Su
Article

Abstract

In this study, benthic flux measurements of inorganic nitrogen (i.e., \( {\text{NH}}^{ + }_{4} \), \( {\text{NO}}^{ - }_{2} \)  +  \( {\text{NO}}^{ - }_{3} \)) were made using a batch incubation system at different stations (i.e., shallow sandy macrophyte and unvegetated beds, and deep central mud) over four seasons in Lake Illawarra, NSW, Australia, to study the influence of different primary producers (i.e., seagrasses, microphytobenthos (MPB) and macroalgae) and/or different sediment types (i.e., sand or mud) on the benthic fluxes. In general, nutrient fluxes displayed typical diel variations, with lower flux out of sediments (release) or enhanced uptake by the sediment in the light, due to the photosynthetic activities of the plant-MPB-sediment community in Lake Illawarra during photosynthetic periods. A distinct seasonal pattern of inorganic-N fluxes was also observed (e.g., the marked difference between summers 2002 and 2003). This may be explained by the seasonal variations in the biomass and activity (growing or decay phases) of MPB, seagrass and macroalgae, which may influence their nutrient assimilation and alter the chemical conditions of surface sediments that influence the benthic geochemical processes and thus benthic nutrient fluxes. On an annual basis, unvegetated sediments displayed net DIN effluxes, while seagrass beds showed a net DIN uptake, and the highest DIN uptakes coincided with the largest standing crop of seagrass and/or macroalgae and the highest levels of benthic community production. This may be due to the enhanced denitrification and/or assimilation activity by rooted plants and macroalgae, and the effect is most efficient during periods of net growth (e.g., in Spring 2002).

Keywords

Benthic Nitrogen Fluxes Sediment Lake Illawarra Estuary 

Notes

Acknowledgements

We are grateful to Jun He, Chinshen Zuang and You Wang for their assistance in the field. The work was supported by the Oceans and Coastal Research Centre (UOW) and the 2005 Endeavour Australia Cheung Kong Awards. Thanks are also due to the Special Project of Chinese Limnology (KZ951-B1-205 and KZ951-A1-402).

References

  1. Berelson, W. M., Heggie, D., Longmore, A., Kilgore, T., Nicholson, G., & Skyring, G. (1998). Benthic nutrient recycling in Port Phillip Bay, Australia. Estuarine, Coastal and Shelf Science, 46, 917–934.CrossRefGoogle Scholar
  2. Blackburn T. H., & Henriksen, K. (1983). Nitrogen cycling in different types of sediments from Danish waters. Limnology and Oceanography, 28, 477–493.Google Scholar
  3. Borum, J. (1996). Shallow waters and land/sea boundaries. In: B.B. Jørgensen & K. Richardson (Eds.), Eutrophication in coastal marine ecosystems. Coastal and estuarine Studies (p. 203). Washington, DC: American Geophysical Union.Google Scholar
  4. Castel, J., Caumette, P., & Herbert, R. A. (1996). Eutrophication gradients in coastal lagoons as exemplified by the Bassin d’Arcachon and the Etang du Prévost. Hydrobiologia, 329, ix–xxviii.CrossRefGoogle Scholar
  5. Chen, C., Petersen, J. E., & Kemp, W. M. (2000). Nutrient uptake in experiment estuarine ecosystem: Scaling and partitioning rates. Marine Ecology Progress Series, 200, 103–116.CrossRefGoogle Scholar
  6. Christensen, P. B., Nielsen, L. P., Sorensen, J., & Revsbech, N. P. (1990). Denitrification in nitrate-rich streams: Diurnal and seasonal variation related to benthic oxygen metabolism. Limnology and Oceanography, 35, 640–651.Google Scholar
  7. Dalsgaard T., Nielsen, L. P., Brotas, V., Viaoli, P., Underwood, G., Nedwell, D., et al. (2000). Protocol Handbook for NICE – Nitrogen Cycling in Estuaries (p. 62). Silkeborg: Ministry of Environment and Energy.Google Scholar
  8. Davey, S., (1994). Nutrient flux rates in sediments in Lake Illawarra (p. 23). Sydney: Australian Water Technologies Water Board.Google Scholar
  9. Duarte, C. M. (1995). Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia, 41, 87–112.Google Scholar
  10. Evans, B., & Landis, J. (2005). The effect of benthic microalgal photosynthetic oxygen production on nitrogen fluxes across the sediment–water interface in a shallow, sub-tropical estuary. MSc thesis, University of Maryland, Annapolis, p. 87.Google Scholar
  11. Eyre, B. D., & Ferguson, A. J. (2002). Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgal and macroalgal dominated warm-temperate Australian lagoons. Marine Ecology Progress Series, 229, 43–59.CrossRefGoogle Scholar
  12. Ford, P. W., & Webster, I. T. (1997). Analysis of nitrogen fluxes from Lake Illawarra sediments (p. 50). Canberra: CSIRO Division of Land and Water.Google Scholar
  13. Grasshoff, K., Kremling, K., & Ehehardt, M. (1999). Methods of seawater analysis (p. 60). New York: Wiley.Google Scholar
  14. Hansen, J. W., Thamdrup, B., & Jorgensen, B. B. (2000a). Anoxic incubation of sediment in gas-tight plastic bags: A method for biogeochemical process studies. Marine Ecology Progress Series, 208, 273–282.CrossRefGoogle Scholar
  15. Hansen, J. W., Udy, J. W., Perry, C. J., & Dennison, W. C. (2000b). Effect of seagrass Zostera capricorni on sediment microbial processes. Marine Ecology Progress Series, 199, 83–96.CrossRefGoogle Scholar
  16. Harris, M. M. (1977). Ecological study on Illawarra Lake with special reference to Zostera capricorni Ascherson. MSc thesis, University of NSW, Sydney, p. 255.Google Scholar
  17. Havens, M. E., Hauxwell, J., Tyler, A. C., Thomas, S., McGlathery, K. J., Cebrian, J., et al. (2001). Complex interactions between autotrophs in shallow marine and freshwater ecosystems: implications for community responses to nutrient stress. Environmental Pollution, 113, 95–107.CrossRefGoogle Scholar
  18. Hintze, J. L. (1998). User’s guide for NCSS 2000 statistical systems for Windows (p. 1716). Utah: Number Cruncher Statistical Systems.Google Scholar
  19. Jensen, M. H., Lomstein, E., & Sorensen, J. (1990). Benthic \( {\text{NH}}^{ + }_{4} \) and \( {\text{NO}}^{ - }_{3} \) flux following sedimentation of a spring phytoplankton bloom in Aarhus Bight, Denmark. Marine Ecology Progress Series, 61, 87–96.CrossRefGoogle Scholar
  20. King, R. J. (1988). The seagrass of Lake Illawarra, New South Wales. Wetlands (Australia), 8(1), 21–26.Google Scholar
  21. Krause-Jensen, D., McGlathery, K., Rysgaard, S., & Christensen, P. B. (1996). Production within dense mats of the filamentous macroalgae Chaetomorpha linum in relation to light and nutrient availability. Marine Ecology Progress Series, 134, 207–216.CrossRefGoogle Scholar
  22. Kuster, N. (2000). An assessment of carbon:nitrogen content and stable isotope ratios of seagrasses, macroalgae and sediment in Lake Illawarra NSW. MEnSc thesis, University of Wollongong. Wollongong, p. 78.Google Scholar
  23. Lachat (1994). International methods list for the QuikChem Automated Ion Analyzer. Milwaukee, WI: Lachat Instruments.Google Scholar
  24. LIA (1995). Lake Illawarra works program environmental appraisal (impact on lake nutrient dynamics) (p. 122). Wollongong: Lake Illawarra Authority.Google Scholar
  25. McGlathery, K., Sundbäck, K., & Anderson, I. C. (2004). The importance of primary producers for the benthic nitrogen and phosphorus cycling. In S. L. Nielsen, G. T. Banta & M. F. Pedersen (Eds.), The influence of primary producers on estuarine nutrient cycling (pp. 232–263). Boston: Kluwer.Google Scholar
  26. Miller, C. L. (1998). Examination of nutrient budgets for the Lake Illawarra system: utilising LOICZ modelling techniques. MEnvSc thesis, University of Wollongong, Wollongong, p. 57.Google Scholar
  27. Page, K. L., Dalal, R., & Menzies, N. W. (2003). Nitrate ammonification and its relationship to the accumulation of ammonium in a Vertisol subsoil. Australian Journal of Soil Research, 41, 687–697.CrossRefGoogle Scholar
  28. Patterson, B., & Partners, P. (1997). West Dapto Planning Project – Water cycle management study (p. 100). Sydney: DLWC.Google Scholar
  29. Qu, W. C. (2004). Studies on nitrogen cycling processes in Lake Illawarra, New South Wales, Australia. PhD thesis, University of Wollongong, Wollongong, p. 199.Google Scholar
  30. Qu, W. C., Morrison, R. J., & West, R. J. (2003). Inorganic nutrient and oxygen fluxes across the sediment–water interface in the inshore macrophyte areas of a shallow estuary (Lake Illawarra, Australia). Hydrobiologia, 492, 119–127.CrossRefGoogle Scholar
  31. Qu, W. C., Morrison, R. J., & West, R. J. (2004). Nitrogen cycling processes in Lake Illawarra, an intermittently closed/open estuary in South-East Australia. Wetlands (Australia), 21, 273–289.Google Scholar
  32. Raffaelli, D. G., Raven, J. A., & Poole, L. J. (1998). Ecological impact of green macroalgal blooms. Oceanography and Marine Biology: An Annual Review, 36, 97–125.Google Scholar
  33. Revsbech, N. P. (1989). An oxygen microsensor with a guard cathode. Limnology and Oceanography, 34, 474–478.CrossRefGoogle Scholar
  34. Risgaard-Petersen, N., & Rysgaard, S. (1995). Nitrate reduction in sediments and waterlogged soil measured by 15N techniques. In K. Alef & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 287–295). London: Academic.Google Scholar
  35. Risgaard-Petersen, N., Dalsgaard, T., Rysgaard, S., Christensen, P. B., Borum, J., McGlathery, K., et al. (1998). Nitrogen balance of a temperate eelgrass Zostera marina bed. Marine Ecology Progress Series, 174, 281–291.CrossRefGoogle Scholar
  36. Rizzo, W. M., Lackey, G. J., & Christian, R. R. (1992). Significance of euphotic, subtidal sediments to oxygen and nutrient cycling in a temperate estuary. Marine Ecology Progress Series, 86, 51–61.CrossRefGoogle Scholar
  37. Roy, P. S. (1984). New South Wales estuaries: Their origin and evolution. In: B. G. Thom (Ed.), Coastal geomorphology in Australia. NSW, Sydney: Academic.Google Scholar
  38. Rysgaard, S., Risgaard-Petersen, N., Nielsen, L. P., & Revsbech, N. P. (1993). Nitrification and denitrification in lake and estuarine sediments measured by the 15N dilution technique and isotope pairing. Applied and Environmental Microbiology, 59, 2093–2098.Google Scholar
  39. Sherman, B., Ford, P., Webster, I., Morrison, J. & West, R. (2000). Lake Illawarra data compilation and assessment (p. 41). Canberra: CSIRO Division of Land & Water Report.Google Scholar
  40. Sundbäck, K., & Graneli, W. (1988). Influence of microphytobenthos on the nutrient flux between sediment and water: A laboratory study. Marine Ecology Progress Series, 43, 63–69.CrossRefGoogle Scholar
  41. Sundbäck, K., & Miles, A. (2000). Balance between denitrification and microalgal incorporation of nitrogen in microtidal sediments, NE Kattegat. Aquatic Microbial Ecology, 22, 291–300.CrossRefGoogle Scholar
  42. Sundbäck, K., & Miles, A. (2002). Role of microphytobenthos and denitrification for nutrient turnover in embayments with floating green algal mats: a spring situation. Aquatic Microbial Ecology, 30, 91–101.CrossRefGoogle Scholar
  43. Tyler, A. C., McGlathery, K. J., & Anderson, I. C. (2001). Macroalgal mediation of dissolved organic nitrogen fluxes in a temperate coastal lagoon. Estuarine Coastal and Shelf Science, 53, 155–168.CrossRefGoogle Scholar
  44. Viaroli, P., Bartoli, M. Bondavalli, C., & Christian, R. R. (1996). Macrophyte communities and their impact on benthic fluxes of oxygen, sulphide and nutrients in shallow eutrophic environments. Hydrobiologia, 329, 105–119.CrossRefGoogle Scholar
  45. Webster, I. T., Ford, P. W., & Hodgson, B. (2002). Microphytobenthos contribution to nutrient-phytoplankton dynamics in a shallow coastal lagoon. Estuaries 25, 540–551.CrossRefGoogle Scholar
  46. Welsh, D. T., Bartoli, M., Nizzoli, D., Castaldelli, G., Riou, S. A., & Viaroli, P. (2000). Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow. Marine Ecology Progress Series, 208, 65–77.CrossRefGoogle Scholar
  47. Yassini, I. (1985). Nutrient pools of Lake Illawarra investigation and management strategy (p. 26). Wollongong: Lake Illawarra Management Committee.Google Scholar
  48. Yassini, I., & Clarke, A. (1986). Aspects of urban stormwater pollution of Lake Illawarra (p. 40). Wollongong: Lake Illawarra Management Committee.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Wenchuan Qu
    • 1
    • 2
  • R. J. Morrison
    • 2
  • R. J. West
    • 2
  • Chenwei Su
    • 3
  1. 1.Lake Sediment and Environment Research LaboratoryNanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
  2. 2.School of Earth and Environmental SciencesUniversity of Wollongong (UOW)WollongongAustralia
  3. 3.School of Biological SciencesUniversity of WollongongWollongongAustralia

Personalised recommendations