Water, Air, and Soil Pollution

, Volume 185, Issue 1–4, pp 293–303 | Cite as

Evaluation of the Sensitivity of European Soils to the Deposition of Acid Compounds: Different Approaches Provide Different Results

Article

Abstract

Analysis of the sensitivity of soils to acidification caused by the deposition of atmospheric pollutants has been one of the major scientific issues in Europe during the past few decades. In the present study, critical loads of acid deposition were calculated using the most accurate datasets available at present for European soils, by the “Simple Mass Balance” method. The results show that the soils most sensitive to acid deposition are Histosols, Cryosols and Podzols in cold areas in northern countries, followed by Lithic and Haplic Leptosols (Dystric) developed on acid parent materials. The highest critical loads corresponded to soils developed over calcareous rocks and soils in areas subject to high precipitation, even those dominated by poorly weatherable primary mineral. In the latter case critical alkalinity leaching is the main variable that determines the value of critical loads, because of the buffering action of the dissolution of aluminium compounds. The results were compared with those obtained by the Stockholm Environmental Institute in the same area, but with a different method of analysis. It was found that the results are highly dependent on the method used to perform the analysis.

Keywords

Acid deposition Critical loads of acidity Sensitivity of soils to acidification 

References

  1. Amacher, M. C. (1991). Methods of obtaining and analyzing kinetic data. In D. L. Sparks & D. L. Suarez (Eds.), Rates of soil chemical processes (pp. 19–59). Madison, WI: Soil Science Society of America.Google Scholar
  2. Barreal, M. E., Camps, M., & Macias, F. (2001). Phosphate and sulphate retention by nonvolcanic soils with andic properties. Soil Science, 166, 691–707.CrossRefGoogle Scholar
  3. Barreal, M. E., Camps, M., & Macias, F. (2003). Chemical properties and soil colour of some oxisols from Brazil and Spain in relation to sulphate sorption. Soil Science, 168, 718–729.CrossRefGoogle Scholar
  4. Calver, L. (2003). A suggested improved method for the quantification of critical loads of acidity for peat soils. Ph.D. thesis. UK: University of York.Google Scholar
  5. Calver, L., Cresser, M., & Smart, R. (2004). Tolerance of calluna vulgaris and peatland plant communities to sulphuric acid deposition. Chemistry and Ecology, 20, 309–320.CrossRefGoogle Scholar
  6. Camps, M., Barreal, M. E., & Macias, F. (1999a). Relating sulphate sorption in forest soils to lithological classes, as defined to calculate critical loads of acidity. Science of The Total Environment, 241, 181–195.CrossRefGoogle Scholar
  7. Camps, M., Barreal, M. E., & Macías, F. (1999b). Parent material on sulphate sorption in forest soils from Northwestern Spain. Soil Science Society of America Journal, 63, 1906–1914.CrossRefGoogle Scholar
  8. Camps, M., Barreal, M. E., & Macías, F. (1999c). Relating sulphate sorption in forest soils to lithological classes, as defined to calculate critical loads of acidity. The Science of the Total Environment, 241, 181–195.CrossRefGoogle Scholar
  9. Camps, M., Barreal, M. E., & Macías, F. (1999d). Retención de sulfatos en los suelos de Galicia: II. Predicción de la adsorción de sulfatos en los suelos derivados de rocas ácidas del noroeste de España. Edafología. Revista de la Sociedad Española de la Ciencia del Suelo, 6, 17–25.Google Scholar
  10. Camps, M., Barreal, M. E., & Macias, F. (2001). Sulphate sorption in nonvolcanic andisols and andic soils from Galicia, NW Spain. Geoderma, 104, 75–93.CrossRefGoogle Scholar
  11. Camps, M., Barreal, M. E., & Macías, F. (2002). Phosphate and sulfate sorption in spodosols with albic horizon from Northern Spain. Soil Science Society of America journal, 66, 464–473.CrossRefGoogle Scholar
  12. Chao, T. T., Harward, M. E., & Fang, S. C. (1964). Iron and aluminum coatings in relation to sulfate adsorption characteristics of soils. Soil Science Society of America Proceedings, 28, 632–635.CrossRefGoogle Scholar
  13. Cinderby, S., Cambridge, H. M., Herrera, R., Hicks, W. K., Kuylenstierna, J. C. I., Murray, F. et al. (1998). Global assessment of ecosystem sensitivity to acidic deposition (p. 20). Stockholm: Stockholm Environment Institute.Google Scholar
  14. Cosby, B. J., Ferrier, R. C., Jenkins, A., & Wright, R. F. (2001). Modelling the effects of acid deposition: Refinements adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrology and Earth System Sciences, 5, 499–517.CrossRefGoogle Scholar
  15. Cronan, C. S., April, R., Bartlett, R. J., Bloom, P. R., Driscoll, C. T., Gherini, S. et al. (1989). Aluminum toxicity in forests exposed to acidic deposition: The ALBIOS results. Water, Air, & Soil Pollution, 48, 1573–2932.CrossRefGoogle Scholar
  16. de Vries, W. (1994). Soil response to acid deposition at different regional scales: Field and laboratory data, critical loads and model predictions (p. 487). Ph.D. thesis. The Netherlands: University of Wageningen.Google Scholar
  17. de Vries, W., Posch, M., Reinds, G. J., & Kämari, J. (1993). Critical loads and their exceedances on forest soils in Europe (p. 116). Wageningen, The Netherlands: The Winand Staring Centre for Integrated Land, Soil and Water Research.Google Scholar
  18. DG-JRC, E. (2003). The European soil database. Distribution version V2.0. Europe: European Commission DG-JRC. Retrieved July 2, 2006, from http://eusoils.jrc.it/ESDB_Archive/ESDBv2/index.htm.
  19. FAO (1995). Digital soil map of the world and derived soil properties CD-ROM (version 3.5). Digital media series 1. Land and water development division, FAO, Rome.Google Scholar
  20. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International. Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
  21. Kämari, J., Posch, M., Kähkänen, A.-M., & Johansson, M. (1995). Modeling potential long-term responses of a small catchment in Lapland to changes in sulphur deposition. Science of The Total Environment, 160/161, 687–701.CrossRefGoogle Scholar
  22. Kuylenstierna, J. C. I., Rodhe, H. S. C., & Hicks, K. (2001). Acidification in developing countries: Ecosystem sensitivity and the critical load approach on a global scale. Ambio, 30, 20–28.CrossRefGoogle Scholar
  23. Macías, F., Camps, M., Rodríguez, L., & Barreal, M. E. (2003). Cargas críticas de contaminantes: un criterio de evaluación de la sensibilidad de la naturaleza para la ordenación de las actividades humanas. In J. Casares Long (Ed.), Reflexiones sobre el medio ambiente en Galicia (pp. 147–187). Santiago de Compostela: Xunta de Galicia.Google Scholar
  24. McFee, W. W. (1980). Sensitivity of soil regions to long-term acid precipitation. In D. S. Shriner, C. R. Richmond, & S. E. Lindberg (Eds.), Atmospheric sulfur deposition: Environmental impact and health effects (pp. 495–506). Michigan: Ann Arbor Science.Google Scholar
  25. Nilsson, S. I., & Grennfelt, P. (1988). Critical loads for sulphur and nitrogen (p. 418). Copenhagen: Nordic Council of Ministers.Google Scholar
  26. Parfitt, R. L. (1978). Anion adsorption by soils and soil materials. Advances in Agronomy, 30, 1–50.CrossRefGoogle Scholar
  27. Petersen, L. (1976). Podzols and podzolization. Ph.D. thesis. Denmark: Royal Veterinary and Agricultural University.Google Scholar
  28. Posch, M., de Smet, P. A. M., Hettelingh, J.-P., & Downing, R. (1995). Calculation and mapping of critical thresholds in Europe. Status report 1995 (p. 198). Bilthoven, The Netherlands: Coordination Centre for Effects, National Institute of Public Health and the Environment (RIVM).Google Scholar
  29. Posch, M., Reinds, G., & Slootweg, J. (2003). The European background database. In M. Posch, J.-P. Hettelingh, J. Slootweg, & R. Downing (Eds.), Modelling and mapping of critical thresholds in Europe (pp. 37–44). Bilthoven, The Netherlands: RIVM.Google Scholar
  30. Rodríguez-Lado, L. (2004). Análisis y cartografía de las Cargas Críticas de Acidez y Eutrofización de suelos (p. 300). Ph.D. thesis. Galicia: Santiago de Compostela.Google Scholar
  31. Spranger, T., Lorenz, U., & Gregor, H.-D. (2004). Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends (p. 266). Berlin: Unweltbundesamt.Google Scholar
  32. Sverdrup, H., & de Vries, W. (1994). Calculating critical loads for acidity with the simple mass balance method. Water, Air, and Soil Pollution, 72, 143–162.CrossRefGoogle Scholar
  33. Sverdrup, H., & Warfvinge, P. (1988). Weathering of primary silicate minerals in the natural soil environment in relation to a chemical weathering model. Water, Air and Soil Pollution, 38, 387–408.Google Scholar
  34. Sverdrup, H., de Vries, W., & Henriksen, A. (1990). Mapping Critical Loads: A guidance to the criteria, calculations, data collection and mapping of critical loads (p. 124). Copenhagen: Nordic Council of Ministers.Google Scholar
  35. Thornthwaite, C. E. (1948). An approach towards a rational classification of climate. Geographical Review, 38, 55–94.CrossRefGoogle Scholar
  36. Ulrich, B. (1991). An ecosystem approach to soil acidification. In B. Ulrich, & M. E. Sumner (Eds.), Soil acidity (pp. 28–75). Berlin: Springer.Google Scholar
  37. van Breemen, N., Driscoll, C. T., & Mulder, J. (1984). Acidic deposition and internal proton sources in acidification of soils and waters. Nature, 307, 599–604.CrossRefGoogle Scholar
  38. Watmough, S. A., & Dillon, P. J. (2002). The impact of acid deposition and forest harvesting on lakes and their forested catchments in south central Ontario: A critical loads approach. Hydrology and Earth Systems Sciences, 6, 833–848.CrossRefGoogle Scholar
  39. Werner, B., & Spranger, T. (1996). Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded (p. 210). Berlin: Task Force on Mapping Section II.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • L. Rodríguez-Lado
    • 1
  • L. Montanarella
    • 1
  • F. Macías
    • 2
  1. 1.European Commission, Directorate General JRCInstitute for Environment and Sustainability, Land Management and Natural Hazards UnitIspraItaly
  2. 2.Laboratorio de Tecnología Ambiental, Instituto de Investigaciones TecnológicasUniversidad de Santiago de CompostelaA CoruñaSpain

Personalised recommendations