Water, Air, and Soil Pollution

, Volume 184, Issue 1–4, pp 235–242 | Cite as

Phytoextraction of Heavy Metals by Eight Plant Species in the Field



Phytoremediation is an in situ, cost-effective potential strategy for cleanup of sites contaminated with trace metals. Selection of plant materials is an important factor for successful field phytoremediation. A field experiment was carried out to evaluate the phytoextraction abilities of six high biomass plants (Vertiveria zizanioides, Dianthus chinensis, Rumex K-1 (Rumex upatientia × R. timschmicus), Rumex crispus, and two populations of Rumex acetosa) in comparison to metal hyperaccumulators (Viola baoshanensis, Sedum alfredii). The paddy fields used in the experiment were contaminated with Pb, Zn, and Cd. Our results indicated that V. baoshanensis accumulated 28 mg kg−1 Cd and S. alfredii accumulated 6,279 mg kg−1 Zn (dry weight) in shoots, with bioconcentration factors up to 4.8 and 6.3, respectively. The resulting total extractions of V. baoshanensis and S. alfredii were 0.17 kg ha−1 for Cd and 32.7 kg ha−1 for Zn, respectively, with one harvest without any treatment. The phytoextraction rates of V. baoshanensis and S. alfredii for Cd and Zn were 0.88 and 1.15%, respectively. Among the high biomass plants, R. crispus extracted Zn and Cd of 26.8 and 0.16 kg ha−1, respectively, with one harvest without any treatment, so it could be a candidate species for phytoextraction of Cd and Zn from soil. No plants were proved to have the ability to phytoextract Pb with high efficiency.


Phytoextraction Heavy metals Bioconcentration factor Field study Viola baoshanensis Phytoextraction efficiency 



This work was supported by the National ‘‘863’’ Project of China (no. 2001AA645010-3) and the National Natural Science Foundation of China (no. 40471117 and no. 30100024), and Fok Ying Tung Education Foundation (no. 94022).


  1. Allen, S. E. (1989). Chemical analysis of ecological materials (2nd edn.). Oxford: Blackwell.Google Scholar
  2. Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In N. Terry & Q. Banuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 85–197). Boca Raton, FL: Lewis.Google Scholar
  3. Baker, A. J. M., McGrath, S. P., Sidoli, C. M. D., & Reeves, R. D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating crops. Resources Conservation and Recycling, 11, 41–49.CrossRefGoogle Scholar
  4. Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31, 860–865.CrossRefGoogle Scholar
  5. Chaney, R. L., Li, Y. M., Brown, S. L., Homer, F. A., Malik, M., Angle, J. S., et al. (2000). Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: Approaches and progress. In N. Terry, G. Banuelos, & J. Vangronsveld (Eds.), Phytoremediation of contaminated soil and water (pp. 129–158). , Boca Raton, Washington DC: Lewis.Google Scholar
  6. Chen, H., & Cutright, T. (2001). EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere, 45, 21–28.CrossRefGoogle Scholar
  7. Copper, E. M., Sims, J. T., Cunningham, S. D., Huang, J. W., & Berti, W. R. (1999). Chelate-assisted phytoextraction of lead from contaminated soil. Journal of Environmental Quality, 28, 1709–1719.CrossRefGoogle Scholar
  8. Cui, Y. S., Wang, Q. R., Dong, Y. T., Li, H. F., & Christie, P. (2004). Enhanced uptake of soil Pb and Zn by Indian mustard and winter wheat following combined soil application of elemental sulphur and EDTA. Plant Soil, 261, 181–188.CrossRefGoogle Scholar
  9. Ebbs, S. D., Lasat, M. M., Brady, D. J., Cornish, J., Gordon, R., & Kochian, L. V. (1997). Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality, 26, 1424–1430.CrossRefGoogle Scholar
  10. Escarré, J., Lefebre, C., Gruber, W., LeBlanc, M., Lepart, J., Riviere, Y., et al. (2000). Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in Mediteranean area: Implications for phytoremediation. New Phytologist, 145, 429–437.CrossRefGoogle Scholar
  11. Ghosh, M. & Singh, S. P. (2005). A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution, 133, 365–371.CrossRefGoogle Scholar
  12. Hammer, D., & Keller, C. (2003). Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use and Management, 19, 144–149.CrossRefGoogle Scholar
  13. Huang, J. W., Chen, J., Berti, W. B., & Cunningham, S. D. (1997). Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environmental Science & Technology, 31, 800–805.CrossRefGoogle Scholar
  14. Hulina, N., & Dumija, L. (1995). Heavy metals in the weeds of Posavina. Poljoprivredna Znanstvena Smotra, 60, 95–103.Google Scholar
  15. Liphadzi, M. S., Kirkham, M. B., Mankin, K. R., & Paulsen, G. M. (2003). EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant Soil, 257, 171–182.CrossRefGoogle Scholar
  16. McGrath, S. P., Dunham, S. J., & Correll, R. L. (2000). Potential for phytoextraction of zinc and cadmium from soils using hyperaccumulator plants. In N. Terry, G. Banuelos, & J. Vangronsveld (Eds.), Phytoremediation of contaminated soil and water (pp. 109–128). Boca Raton, USA: Lewis.Google Scholar
  17. McGrath, S. P., Lombi, E., Gray, C. W., Caille, N., Dunham, S. J., & Zhao, F. J. (2006). Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 141, 115–125.CrossRefGoogle Scholar
  18. McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14, 277–282.CrossRefGoogle Scholar
  19. Meers, E., Ruttens, A., Hopgood, M., Lesage, E., & Tack, F. M. G. (2005). Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere, 61, 561–572.CrossRefGoogle Scholar
  20. Mertens, J., Luyssaert, S., & Verheyen, K. (2005). Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environmental Pollution, 138, 1–4.CrossRefGoogle Scholar
  21. Nowack, B., Schulin, R., & Robinson, B. (2006). Critical assessment of chelant-enhanced metal phytoextraction. Environmental Science & Technology, 40, 5225–5232.CrossRefGoogle Scholar
  22. Page, A. L., Miller, R. H., & Keener, D. R. (1982). Methods of soil analysis. Part 2, Chemical and microbiological properties (2nd ed.), Agronomy No. 9. Madison, Wisconsin: American Society of Agronomy and Soil Science Society of America.Google Scholar
  23. Robinson, B. H., Leblanc, M., Petit, D., Brooks, R. R., Kirkman, J. H., & Gregg, P. E. H. (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil, 203, 47–56.CrossRefGoogle Scholar
  24. Salt, D. E., Blaylock, M., Kumar, P. B. A. N., Dushenkov, V., Ensley, B. D., Chet, I., et al. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–474.CrossRefGoogle Scholar
  25. Shu, W. S., Ye, Z. H., Lan, C. Y., Zhang, Z. Q., & Wong, M. H. (2001). Acidification of lead/zinc mine tailings and its effect on heavy metal mobility. Environment International, 26, 389–394.CrossRefGoogle Scholar
  26. Solhi, M., Shareatmadari, H., & Hajabbasi, M. A. (2005). Lead and zinc extraction potential of two common crop plants, helianthus annuus and Brassica napus. Water Air and Soil Pollution, 167, 59–71.CrossRefGoogle Scholar
  27. Szabó, L., & Fodor, L. (2006). Uptake of microelements by crops grown on heavy metal-amended soil. Communications in Soil Science and Plant Analysis, 37, 2679–2689.CrossRefGoogle Scholar
  28. Turgut, C., Pepe, M. K., & Cutright, T. J. (2004). The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution, 131, 147–154.CrossRefGoogle Scholar
  29. Vervaekea, P., Luyssaerta, S., Mertensa, J., Meersb, E., Tackb, F. M. G., & Lusta, N. (2003). Phytoremediation prospects of willow stands on contaminated sediment: A field trial. Environmental Pollution, 126, 275–282.CrossRefGoogle Scholar
  30. Wenzel, W. W., Unterbrunner, R., Sommer, P., & Sacco, P. (2003). Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil, 249, 83–96.CrossRefGoogle Scholar
  31. Zhao, F. J., Lombi, E., & McGrath, S. P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil, 249, 37–43.CrossRefGoogle Scholar
  32. Zhuang, P., Ye, Z. H., Lan, C. Y., Xie, Z. W., & Shu, W. S. (2005). Chemically assisted phytoextraction of heavy metals contaminated soils using three plant species. Plant Soil, 276, 153–162.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • P. Zhuang
    • 1
  • Q. W. Yang
    • 1
  • H. B. Wang
    • 1
  • W. S. Shu
    • 1
  1. 1.School of Life Sciences, and State Key Laboratory of BiocontrolSun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations