Water, Air, and Soil Pollution

, Volume 184, Issue 1–4, pp 105–126 | Cite as

Phytoremediation Technology: Hyper-accumulation Metals in Plants

  • Prabha K. Padmavathiamma
  • Loretta Y. LiEmail author


This paper reviews key aspects of phytoremediation technology and the biological mechanisms underlying phytoremediation. Current knowledge regarding the application of phytoremediation in alleviating heavy metal toxicity is summarized highlighting the relative merits of different options. The results reveal a cutting edge application of emerging strategies and technologies to problems of heavy metals in soil. Progress in phytoremediation is hindered by a lack of understanding of complex interactions in the rhizosphere and plant based interactions which allow metal translocation and accumulation in plants. The evolution of physiological and molecular mechanisms of phytoremediation, together with recently-developed biological and engineering strategies, has helped to improve the performance of both heavy metal phytoextraction and phytostabilization. The results reveal that phytoremediation includes a variety of remediation techniques which include many treatment strategies leading to contaminant degradation, removal (through accumulation or dissipation), or immobilization. For each of these processes, we review what is known for metal pollutants, gaps in knowledge, and the practical implications for phytoremediation strategies.


Metals Phytoremediation Pollution Hyper accumulation De-contamination Excluders Chelation 


  1. Abia, A. A., Horsfall, M., & Didi, O. (2003). The use of chemically modified and unmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution. Bioresource Technology, 90, 345–348.CrossRefGoogle Scholar
  2. Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142.CrossRefGoogle Scholar
  3. Albasel, N., & Cottenie, A. (1985). Heavy metal contamination near major highways, industrial and urban areas in Belgium grassland. Water, Air and Soil Pollution, 24, 103–109.CrossRefGoogle Scholar
  4. Al-Chalabi, A. S., & Hawker, D. (2000). Distribution of vehicular lead in roadside soils of major roads of Brisbane, Australia. Water, Air and Soil Pollution, 118, 299–310.CrossRefGoogle Scholar
  5. Alloway, B. J. (1995). Soil processes and the behavior of metals. In: Alloway B. J. (Ed), Heavy metals in soils (pp. 38–57). London: Blackie.Google Scholar
  6. Alkorta, I., Herna´ndez-Allica, J., Becerril, J. M., Amezaga, I., Albizu, I., & Garbisu, C. (2004). Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Reviews in Environmental Science and Bio/Technology, 3, 71–90.CrossRefGoogle Scholar
  7. Atkinson, R., Aschmann, S. M., Hasegawa, D., Eagle-Thompson, E. T., & Frankenberger, J. R. (1990). Kinetics of the atmospherically important reactions of dimethylselenide. Environmental Science and Technology, 24, 1326–1332.CrossRefGoogle Scholar
  8. Azaizeh, H. A., Gowthaman, S., & Terry, N. (1997). Microbial selenium volatilization in rhizosphere and bulk soils from a constructed wetland. Journal of Environmental Quality, 26(3), 666–672.Google Scholar
  9. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyper accumulate metallic elements – Review of their distribution, ecology, and phytochemistry. Biorecovery, 1, 81–126.Google Scholar
  10. Baker, A. J. M., Reeves, R. D., & McGrath, S. P. (1991). In situ decontamination of heavy metal polluted soils using crops of metal accumulating plants – A feasibility study. In R. E. Hinchee & R. F. Olfenbuttel (Eds.), In-situ bioremediation (pp. 539–544). Stoneham, M. A: Butterworth-Heinemann.Google Scholar
  11. Baker, A. J. M., & Walker, P. L. (1989). Ecophysiology of metal uptake by tolerant plants. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: Evolutionary aspects (pp. 155–177). Boca Raton, FL: CRC.Google Scholar
  12. Banuelos, G. S., Cardon, G., Mackey, B., Ben-Asher, J., Wu, L. P., Beuselinck, P., et al. (1993). Boron and selenium removal in B-laden soils by four sprinkler irrigated plant species. Journal of Environmental Quality, 22(4), 786–797.Google Scholar
  13. Basic, N., Keller, C., Fontanillas, P., Vittoz, P., Besnard, G., & Galland, N. (2006a). Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations. Plant Biology, 8, 64–72.CrossRefGoogle Scholar
  14. Basic, N., Salamin, N., Keller, C., Galland, N., & Besnard, G. (2006b). Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations. Biochemical Systematics and Ecology, 34(9), 667–677.CrossRefGoogle Scholar
  15. Baudouin, C., Charveron, M., Tarrouse, R., & Gall, Y. (2002). Environmental pollutants and skin cancer. Cell Biology and Toxicology, 18, 341–348.CrossRefGoogle Scholar
  16. Beath, O. A., Eppsom, H. F., & Gilbert, G. S. (1937). Selenium distribution in and seasonal variation of vegetation type occurring on seleniferous soils. Journal of the American Pharmaceutical Association, 26, 394–405.Google Scholar
  17. Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza G., Bullitta, S., et al. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology & Biochemistry, 37, 241–250.CrossRefGoogle Scholar
  18. Berti, W. R., & Cunningham, S. D. (2000). Phytostabilization of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean-up the environment (pp. 71–88). New York: Wiley.Google Scholar
  19. Bidwell S. D., Woodrow, I. E., Batianoff, G. N., & Sommer-Knudsen, J. (2002). Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Functional Plant Biology, 29, 899–905.CrossRefGoogle Scholar
  20. Birch, G. E., & Scollen, A. (2003). Heavy metals in road dust, gully pots and parkland soils in a highly urbanised sub-catchment of Port Jackson, Australia. Australian Journal of Soil Research, 41, 1329–1342.CrossRefGoogle Scholar
  21. Blaylock, M. J., & Huang, J. W. (2000). Phytoextraction of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean-up the environment (pp. 53–70). New York: Wiley.Google Scholar
  22. Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology, 31(3), 860–865.CrossRefGoogle Scholar
  23. Bolan, N. S., Adriano, D. C., & Naidu, R. (2003). Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Reviews of Environmental Contamination and Toxicology, 177, 1–44.CrossRefGoogle Scholar
  24. Boonyapookana, B., Parkplan, P., Techapinyawat, S., DeLaune, R. D., & Jugsujinda, A. (2005). Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). Journal of Environmental Science and Health A, 40, 117–137.CrossRefGoogle Scholar
  25. Boularbah, A., Schwartz, C., Bitton, G., Aboudrar, W., Ouhammou, A., & Morel, J. L. (2006). Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 63(5), 811–817.CrossRefGoogle Scholar
  26. Broadhurst, C. L., Chaney, R. L., Angle, J. S., Maugel, T. K., Erbe, E. F., & Murphy, C. A. (2004). Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environmental Science & Technology, 38, 5797–5802.CrossRefGoogle Scholar
  27. Brooks, R. R. (ed) (1998). Plants that hyperaccumulate heavy metals (p. 384). Wallingford: CAB International.Google Scholar
  28. Caille, N., Swanwick, S., Zhao, F. J., & McGrath, S. P. (2004). Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation. Environmental Pollution, 132, 113–120.CrossRefGoogle Scholar
  29. Chandra Sekhar, K., Kamala, C. T., Chary, N. S., Balaram, V., & Garcia, G. (2005). Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere, 58, 507–514.CrossRefGoogle Scholar
  30. Chaney, R. L. (1983). Plant uptake of inorganic waste constitutes. In J. F. Parr, P. B. Marsh, & J. M. Kla (Eds.), Land treatment of hazardous wastes (pp. 50–76). Park Ridge, NJ: Noyes Data Corp.Google Scholar
  31. Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S., et al. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology, 8, 279–283.CrossRefGoogle Scholar
  32. Chaudhry, T. M., Hayes, W. J., Khan, A. G., & Khoo, C. S. (1998). Phytoremediation – Focusing on accumulator plants that remediate metal-contaminated soils. Australasian Journal of Ecotoxicology, 4, 37–51.Google Scholar
  33. Chen, Y. X., Wang, Y. P., Wu, W. X. Lin, Q., & Xue, S. G. (2006). Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Science of the Total Environment, 356(1–3), 247–255.CrossRefGoogle Scholar
  34. Clemente, R., Almela, C., & Bernal, P. M. (2006). A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environmental Pollution, 143(3), 397–406.CrossRefGoogle Scholar
  35. Clemente, R., Walker, J. D., Roig, A., & Bernal, P. M. (2003). Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalc´ollar (Spain). Biodegradation, 14, 199–205.CrossRefGoogle Scholar
  36. Comis, D. (1996). Green remediation: Using plants to clean the soil. Journal of Soil and Water Conservation, 51(3), 184–187.Google Scholar
  37. Conesa, M. H., Faz, A., & Arnaldos, R. (2006). Initial studies for the phytostabilization of a mine tailing from the Cartagena–La Union Mining District (SE Spain). Chemosphere, 66(1), 38–44.CrossRefGoogle Scholar
  38. Cooper, E. M., Sims, J. T., Cunningham, S. D., Huang, J. W., & Berti, W. R. (1999). Chelate-assisted phytoextraction of lead from contaminated soil. Journal of Environmental Quality, 28, 1709–1719.Google Scholar
  39. Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110(3), 715–719.Google Scholar
  40. Cunningham, S. D., Shann, J. R., Crowley, D. E., & Anderson, T. A. (1997). Phytoremediation of contaminated water and soil. In E. L. Kruger, T. A. Anderson, & J. R. Coats (Eds.), Phytoremediation of soil and water contaminants. ACS Symposium series 664 (pp. 2–19). Washington, DC: American Chemical Society.Google Scholar
  41. Davis, T. A., Volesky, B., & Vieira, R. H. S. F. (2000). Sargassum seaweed as biosorbent for heavy metals. Water Research, 34, 4270–4278.CrossRefGoogle Scholar
  42. Desouza, M. P., Pilon-Smits, E. A. H., & Terry, N. (2000). The physiology and biochemistry of selenium volatilization by plants. In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean-up the environment (pp. 171–190). New York: Wiley.Google Scholar
  43. Dierberg, F. E., Débuts, T. A., & Goulet, J. R. N. A. (1987). Removal of copper and lead using a thin-film technique. In K. R. Reddy & W. H. Smith (Eds.), Aquatic plants for water treatment and resource recovery (pp. 497–504). Magnolia.Google Scholar
  44. Dushenkov, S., & Kapulnik, Y. (2000). Phytofilitration of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals – Using plants to clean-up the environment (pp. 89–106). New York: Wiley.Google Scholar
  45. Dushenkov, V., Kumar, P. B. A. N., Motto, H., & Raskin, I. (1995). Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environmental Science and Technology, 29, 1239–1245.CrossRefGoogle Scholar
  46. Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K. C., et al. (1997a). Removal of uranium from water using terrestrial plants. Environmental Science and Technology, 31(12), 3468–3474.CrossRefGoogle Scholar
  47. Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K. C., et al. (1997b). Phytoremediation: A novel approach to an old problem. In D. L. Wise (Ed.), Global environmental biotechnology (pp. 563–572). Amsterdam: Elsevier.Google Scholar
  48. Eapen, S., & D’Souza, S. F. (2005). Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances, 23, 97–114.CrossRefGoogle Scholar
  49. Ebbs, S. D., Lasat, M. M., Brandy, D. J., Cornish, J., Gordon, R., & Kochian, L. V. (1997). Heavy metals in the environment: Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality, 26, 1424–1430.Google Scholar
  50. Elless, P. M., Poynton, Y. C., Williams, A. C., Doyle, P. M., Lopez, C. A., Sokkary, A. D., et al. (2005). Pilot-scale demonstration of phytofiltration for drinking arsenic in New Mexico drinking water. Water Research, 39(16), 3863–3872.CrossRefGoogle Scholar
  51. Ensley, B. D. (2000). Rationale for use of phytoremediation. In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean- up the environment (pp. 3–12). New York: Wiley.Google Scholar
  52. Entry, J. A., Watrud, L. S., & Reeves, M. (1999). Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environmental Pollution, 104, 449–457.CrossRefGoogle Scholar
  53. Evangelou, M. W. H., Ebel, M., & Schaeffer, A. (2006). Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere, 63(6), 996–1004.CrossRefGoogle Scholar
  54. Evans, C. S., Asher, C., & Johnson, C. M. (1968). Isolation of dimethyl diselenide and other volatile selenium compounds from Astragalus racemosus (Pursh.) Aust. Journal of Biological Sciences, 21, 13–20.Google Scholar
  55. Fakayode, S. O., & Olu-Owolabi, B. I. (2003). Heavy metal contamination of roadside topsoil in Osogbo, Nigeria: Its relationship to traffic density and proximity to highways. Environmental Geology, 44(2), 150–157.Google Scholar
  56. Fatoki, O. S. (1996). Trace zinc and copper concentration in roadside surface soils and vegetation: A measurement of local atmospheric pollution in Alice, South Africa. Environmental Interpretation, 22, 759–762.Google Scholar
  57. Flathman, P. E., & Lanza, G. R. (1998). Phytoremediation: Current views on an emerging green technology. Journal of Soil Contamination, 7(4), 415–432.CrossRefGoogle Scholar
  58. Frérot, H., Lefèbvre, C., Gruber, W., Collin, C., Dos Santos, A., & Escarre, J. (2006). Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant and Soil, 282, 53–65.CrossRefGoogle Scholar
  59. Garbisu, C., & Alkorta, I. (2001). Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77, 229–236.CrossRefGoogle Scholar
  60. García, R., & Millán, E. (1998). Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain). Chemosphere, 37, 1615–1625.CrossRefGoogle Scholar
  61. Gardea-Torresdey, J. L., de la Rosa, G., & Peralta-Videa, J. R. (2004). Use of phytofiltration technologies in the removal of heavy metals: A review. Pure and Applied Chemistry, 76(4), 801–813.Google Scholar
  62. Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3(1), 1–18.Google Scholar
  63. Glass, D. J. (1999). U.S. and international markets for phytoremediation, 1999–2000 (p. 266). Needham, MA: D. Glass Associates.Google Scholar
  64. Gorjanovic, S., Suznjevic, D., Beljanski, M., & Hranisavljevic, J. (2006). Barley lipid-transfer protein as heavy metal scavenger. Environmental Chemistry Letters, 2(3), 113–116.CrossRefGoogle Scholar
  65. Gulson, B. L., Tiller, K. G., Mizon, K. J., & Merry, R. H. (1981). Use of lead isotopes in soils to identify the source of lead contamination near Adelaide, South Australia. American Chemical Society, 15(6), 691–696.Google Scholar
  66. Hammer, D., Keller, C., McLaughlin, M. J., & Hamon, R. E. (2006). Fixation of metals in soil constituents and potential remobilization by hyperaccumulating and non-hyperaccumulating plants: Results from an isotopic dilution study. Environmental Pollution, 143(3), 407–415.CrossRefGoogle Scholar
  67. Han, F. X., Banin, A., Kingery, W. L., Triplrtt, G. B., Zhou, L. X., Zheng, S. J., et al. (2003). New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research, 8, 113–120.CrossRefGoogle Scholar
  68. Heaton, A. C. P., Rugh, C. L., Wang, N., & Meagher, R. B. (1998). Phytoremediation of mercury- and methyl mercury-polluted soils using genetically engineered plants. Journal of Soil Contamination, 74, 497–510.CrossRefGoogle Scholar
  69. Hernandez-Allica, J., Becerril, J. M., Zarate, O., & Garbisu, C. (2006). Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant and Soil, 281(1–2), 147–158.CrossRefGoogle Scholar
  70. Ho, Y. B., & Tai, K. M. (1988). Elevated levels of lead and other metals in roadside soil and grass and their use to monitor aerial metal depositions in Hong Kong. Environmental Pollution, 49(1), 37–51.CrossRefGoogle Scholar
  71. Horsfall, M., & Abia, A. A. (2003). Sorption of cadmium (II) and zinc (II) ions from aqueous solutions by cassava waste biomass (Manihot sculenta Cranz). Water Research, 37, 4913–4923.CrossRefGoogle Scholar
  72. Huang, J. W., Chen, J., Berti, W. R., & Cunningham, S. D. (1997). Phytoremediation of lead contaminated soil: Role of synthetic chelates in lead phytoextraction. Environmental Science and Technology, 31(3), 800–805.CrossRefGoogle Scholar
  73. Hughes, J. B., Shanks, J., Vanderford, M., Lauritzen, J., & Bhadra, R. (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science & Technology, 31, 266–271.CrossRefGoogle Scholar
  74. Jaffre, T., Brooks, R. R., Lee, J., & Reeves, R. D. (1976). Sebertia acumip. A nickel-accumulating plant from New Caledonia. Science, 193, 579–580.CrossRefGoogle Scholar
  75. Jain, S. K., Vasudevan, P., Jha, N. K. (1989). Removal of some heavy metals from polluted water by aquatic plants: Studies on duckweed and water velvet. Biological Wastes, 28(2), 115–126.CrossRefGoogle Scholar
  76. Kay, S. H., Haller, W. T., & Garrard, L. A. (1984). Effect of heavy metals on water hyacinths [Eichhornia crassipes (Mart.) Solms]. Aquatic Toxicology, 5, 117–128.CrossRefGoogle Scholar
  77. Keller, C., Diallo, S., Cosio, C., Basic, N., & Galland, N. (2006). Cadmium tolerance and hyperaccumulation by Thlaspi caerulescens populations grown in hydroponics are related to plant uptake characteristics in the field. Functional Plant Biology, 33(7), 673–684.CrossRefGoogle Scholar
  78. Knasmuller, S., Gottmann, E., Steinkellner, H., Fomin, A., Pickl, C., Paschke, A., et al. (1998). Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutation Research, 420, 37–48.Google Scholar
  79. Kobayashi, F., Asada, C., & Nakamura, Y. (2005). Phytoremediation of soil contaminated with heavy metals and recovery of valuable metals. Kagaku Kogaku Ronbunshu, 31(6), 476–480.CrossRefGoogle Scholar
  80. Kubota, H., & Takenaka, C. (2003). Arabis gemmifera is a hyperaccumulator of Cd and Zn. International Journal of Phytoremediation, 5, 197–120.CrossRefGoogle Scholar
  81. Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science and Technology, 29(5), 1232–1238.CrossRefGoogle Scholar
  82. Kuo, S., Jellum, E. J., & Baker, A. S. (1985). Effects of soil type, liming, and sludge application on zinc and cadmium availability to Swiss chard. Soil Science, 139, 122–130.CrossRefGoogle Scholar
  83. Lasat, M. M. (2002). Phytoextraction of toxic metals – A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.Google Scholar
  84. Lasat, M. M., Fuhrmann, M., Ebbs, S. D., Cornish, J. E., & Kochian, L. V. (1998). Phytoremediation of a radio cesium contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. Journal of Environmental Quality, 27(1), 165–168.Google Scholar
  85. Leblanc, M., Petit, D., Deram, A., Robinson, B., & Brooks, R. R. (1999). The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Economic Geology, 94(1), 109–113.Google Scholar
  86. LeDuc, D. L., Samie, M. A., Bayon, M. M., Wu, C. P., Reisinger, S. J., & Terry, N. (2006). Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environmental Pollution, 144(1), 70–76.CrossRefGoogle Scholar
  87. Lewis, B. G., Johnson, C. M., & Delwiche, C. C. (1966). Release of volatile selenium compounds by plants: Collection procedures and preliminary observations. Journal of Agricultural and Food Chemistry, 14, 638–640.CrossRefGoogle Scholar
  88. Li, Y. M., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (2000). Phytoremediation of heavy metal contaminated soils. In D. L. Wise et al. (Eds.), Bioremediation of contaminated soils. New York: Marcel Dekker.Google Scholar
  89. Li, X. D., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.CrossRefGoogle Scholar
  90. Liu, Y. G., Zhang, H. Z., Zeng, G. M., Huang, B. R., & Li, X. (2006). Heavy metal accumulation in plants on Mn mine tailings. Pedosphere, 16(1), 131–136.CrossRefGoogle Scholar
  91. Lombi, E., Zhao, F. J., Dunham, S. J., & MacGrath, S. P. (2001a). Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality, 30, 1919–1926.Google Scholar
  92. Lombi, E., Zhao, F. J., Dunham. S. J., & McGrath, S. P. (2001b). Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi geosingense. New Phytologist, 145, 11–20.CrossRefGoogle Scholar
  93. Luo, C. L., Shen, Z. G., Li, X. D., & Baker, A. J. M. (2006). Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere, 63(10), 1773–1784.CrossRefGoogle Scholar
  94. Mains, D., Craw, D., Rufaut, C. G., & Smith, C. M. S. (2006a). Phytostabilization of gold mine tailings, New Zealand. Part 1: Plant establishment in alkaline saline substrate. International Journal of Phytoremediation, 8(2), 131–147.CrossRefGoogle Scholar
  95. Mains, D., Craw, D., Rufaut, C. G., & Smith, C. M. S. (2006b). Phytostabilization of gold mine tailings from New Zealand. Part 2: Experimental evaluation of arsenic mobilization during revegetation. International Journal of Phytoremediation, 8(2), 163–183.CrossRefGoogle Scholar
  96. McEldowney, S., Hardman, D. J., & Waite, S. (1993). Treatment technologies. In S. McEldowney, D. J. Hardman, & S. Waite (Eds.), Pollution, ecology and biotreatment (pp. 48–58). Singapore: Longman Singapore Publishers Pvt. Ltd.Google Scholar
  97. McGrath, S. P. (1998). Phytoextraction for soil remediation. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining (pp. 261–288). New York: CAB International.Google Scholar
  98. McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids. Current Opinion in Biotechnology, 14, 277–282.CrossRefGoogle Scholar
  99. McGrath, S. P., Zhao, F. J., & Lombi, E. (2002). Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy, 75, 1–56.CrossRefGoogle Scholar
  100. McIntyre, T. (2003). Phytoremediation of heavy metals from soils. Advances in Biochemical Engineering, Biotechnology, 78, 97–123.Google Scholar
  101. Meagher, R. B. (2000). Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology, 3, 153–162.CrossRefGoogle Scholar
  102. Mkandawire, M., & Dudel, E. G. (2005). Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Science of the Total Environment, 336, 81–89.CrossRefGoogle Scholar
  103. Mo, S. C., Choi, D. S., & Robinson, J. W. (1989). Uptake of mercury from aqueous solution by duckweed: The effect of pH, copper, and humic acid. Journal of Environmental Health, 24, 135–146.Google Scholar
  104. Navari-Izzo, F., & Quartacci, M. F. (2001). Phytoremediation of metals – Tolerance mechanisms against oxidative stress. Minerva Biotecnologica, 13, 73–83.Google Scholar
  105. Nouairi, I., Ben Ammar, W., Ben Youssef, N., Daoud, D. B., Ghorbal, M. H., & Zarrouk, M. (2006). Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Science, 170(3), 511–519.CrossRefGoogle Scholar
  106. O’Connor, C. S., Leppi, N. W., Edwards, R., & Sunderland, G. (2003). The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: A laboratory-scale feasibility study. Environmental Monitoring and Assessment, 84, 141–158.CrossRefGoogle Scholar
  107. Odjegba, V. J., & Fasidi, I. O. (2004). Accumulation of trace elements by Pistia stratiotes: Implications for phytoremediation. Ecotoxicology, 13, 637–646.CrossRefGoogle Scholar
  108. Parker, D. R., Feist, L. J., Varvel, T. W., Thomason, D. N., & Zhang, Y. Q. (2003). Selenium phytoremediation potential of Stanleya pinnata. Plant Soil, 249, 157–165.CrossRefGoogle Scholar
  109. Pendergrass, A., & Butcher, D. J. (2006). Uptake of lead and arsenic in food plants grown in contaminated soil from Barber Orchard, NC. Microchemical Journal, 83(1), 14–16.CrossRefGoogle Scholar
  110. Pilon-Smits, E. A. H. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.CrossRefGoogle Scholar
  111. Pilon-Smits, E. A. H., Desouza, M. P., Hong, G., Amini, A., Bravo, R. C., Payabyab, S. T., et al. (1999). Selenium volatilization and accumulation by twenty aquatic plant species. Journal of Environmental Quality, 28(3), 1011–1017.Google Scholar
  112. Pitchel, J., Kuroiwa, K., & Sawyer, H. T. (1999). Distribution of Pb, Cd and Ba in soils and plants of two contaminated soils. Environmental Pollution, 110, 171–178.Google Scholar
  113. Prasad, M. N. V, & Freitas, H. (2003). Metal hyperaccumulation in plants – Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6, 275–321.Google Scholar
  114. Pugh, R. E., Dick, D. G., & Fredeen, A. L. (2002). Heavy metal (Pb, Zn, Cd, Fe and Cu) contents of plant foliage near the Anvil range lead/zinc mine, Faro, Yukon Territory. Ecotoxicology and Environmental Safety, 52, 273–279.CrossRefGoogle Scholar
  115. Quartacci, M. F., Argilla, A., Baker, A. J. M., & Navari-Izzo, F. (2006). Phytoextraction of metals from a multiple contaminated soil by Indian mustard. Chemosphere, 63(6), 918–925.CrossRefGoogle Scholar
  116. Raskin, I., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8, 221–226.CrossRefGoogle Scholar
  117. Reeves, R. D., & Brooks, R. R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from a mining area of Central Europe. Environmental Pollution Series A, 31, 277–287.CrossRefGoogle Scholar
  118. Rizzi, L., Petruzzelli, G., Poggio, G., & Vigna, G. (2004). Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere, 57(9), 1039–1046.CrossRefGoogle Scholar
  119. Robinson, B. H., Brooks, R. R., Howes, A. W., Kirkman, J. H., & Gregg, P. E. H. (1997). The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. Journal of Geochemical Exploration, 60, 115–126.CrossRefGoogle Scholar
  120. Sagiroglu, A., Sasmaz, A, & Sen, O. (2006). Hyperaccumulator plants of the Keban mining district and their possible impact on the environment. Polish Journal of Environmental Studies, 15(2), 317–325.Google Scholar
  121. Salt, D. E., Blaylock, M., Kumar, P. B. A. N., Dushenkov, V., Ensley, B. D., Chet, L., et al. (1995). Phyto-remediation: a novel strategy for the removal of toxic metals from the environment using plants. Biogeochemistry, 13, 468–474.Google Scholar
  122. Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.CrossRefGoogle Scholar
  123. Sánchez Martín, M. J., Sánchez Camazano, M., & Lorenzo, L. F. (2000). Cadmium and lead contents in suburban and urban soils from two medium-sized cities of Spain: Influence of traffic intensity. Bulletin of Environmental Contamination and Toxicology, 64, 250–257.CrossRefGoogle Scholar
  124. Santos, F. S., Hernández-Allica, J., Becerril, J. M., Amaral-Sobrinho, N., Mazur, N., & Garbisu, C. (2006). Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere, 65(1), 43–50.CrossRefGoogle Scholar
  125. Schnoor, J. L. (2000). Phytostabilization of metals using hybrid poplar trees. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean-up the environment (pp. 133–150). New York: Wiley.Google Scholar
  126. Schwartz, C., Echevarria, G., & Morel, J. L. (2003). Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil, 24, 27–35.CrossRefGoogle Scholar
  127. Sekhar, K. C., Kamala, C. T., Chary, N. S., Sastry, A. R. K., Rao, T. N., & Vairamani, M. (2004). Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass. Journal of Hazardous Materials, 108, 111–117.CrossRefGoogle Scholar
  128. Sharma, N. C., Gardea-Torresdey, J. L., Parsons, J., & Sahi, S. V. (2004). Chemical speciation and cellular deposition of lead in Sesbania drummondii. Environmental Toxicology and Chemistry, 23, 2068–2073.CrossRefGoogle Scholar
  129. Sheng, X. F., & Xia, J. J. (2006). Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere, 64(6), 1036–1042.CrossRefGoogle Scholar
  130. Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., & Jain, R. K. (2003). Phytoremediation: an overview of metallicion decontamination from soil. Applied Microbiology and Biotechnology, 61, 405–412.Google Scholar
  131. Smith, R. A. H., & Bradshaw, A. D. (1992). Stabilization of toxic mine wastes by the use of tolerant plant populations. Transactions of the Institution of Mining and Metallurgy, 81, A230–A237.Google Scholar
  132. Smolders, E., & Degryse, F. (2002). Fate and effect of zinc from tire debris in soil. Environmental Science and Technology, 36, 3706–3710.CrossRefGoogle Scholar
  133. Stoltz, E. (2004). Phytostabilisation:use of wet plants to treat mine tailings. Doctoral thesis, Department of Botany, Stockholm University.Google Scholar
  134. Stoltz, E., & Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47(3), 271–280.CrossRefGoogle Scholar
  135. Suresh, B., & Ravishankar, G. A. (2004). Phytoremediation – A novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology, 24, 97–124.CrossRefGoogle Scholar
  136. Suszcynsky, E. M., & Shann, J. R. (1995). Phytotoxicity and accumulation of mercury subjected to different exposure routes. Environmental Toxicology and Chemistry, 14, 61–67.CrossRefGoogle Scholar
  137. Sutherland, R. A., Day, J. P., & Bussen, J. O. (2003). Lead concentrations, isotope ratios and source apportionment in road deposited sediments, Honolulu, Oahu, Hawaii. Water, Air and Soil Pollution, 142, 165–186.CrossRefGoogle Scholar
  138. Swaileh, K. M., Hussen, R. H., & Abu-Elhaj, S. (2004). Assessment of heavy metal contamination in road side surface soil and vegetation from the West Bank. Archives of Environmental Contamination and Toxicology, 47, 23–30.CrossRefGoogle Scholar
  139. Tandy, S., Schulin, R., & Nowack, B. (2006). The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere, 62(9), 1454–1463.CrossRefGoogle Scholar
  140. Terry, N., Carlson, C., Raab, T. K., & Zayed, A. (1992). Rates of selenium volatilization among crop species. Journal of Environmental Quality, 21, 341–344.Google Scholar
  141. Thangavel, P., & Subhuram, C. V. (2004). Phytoextraction – Role of hyper accumulators in metal contaminated soils. Proceedings of the Indian National Science Academy. Part B, 70(1), 109–130.Google Scholar
  142. Tian, J. L., Zhu, H. T., Yang, Y. A., & He, Y. K. (2004). Organic mercury tolerance, absorption and transformation in Spartina plants. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao (Journal of Plant Physiology and Molecular Biology), 30, 577–582.Google Scholar
  143. Tordoff, G. M., Baker, A. J. M., & Willis, A. J. (2000). Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41(1–2), 219–228.CrossRefGoogle Scholar
  144. Turer, D., Maynard, J. B., & Sansalone, J. J. (2001). Heavy metal contamination in soils of urban highways: Comparison between runoff and soil concentrations at Cincinnati, Ohio. Water, Air, and Soil Pollution, 132, 293–314.CrossRefGoogle Scholar
  145. Utsunamyia, T. (1980). Japanese patent application no. 55-72959.Google Scholar
  146. Viard, B., Pihan, F., Promeyrat, S., & Pihan, J. C. (2004). Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere, 55(10), 1349–1359CrossRefGoogle Scholar
  147. Viklander, M. (1998). Particle size distribution and metal content in street sediments. Journal of Environmental Engineering, 124, 761–766.CrossRefGoogle Scholar
  148. Wang, A. S., Angle, J. S., Chaney, R. L., Delorme, T. A., & Reeves, R. D. (2006). Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and Soil, 281(1–2), 325–337.CrossRefGoogle Scholar
  149. Wang, J., Zhao, F., Meharg, A. A., Raab, A., Feldmann, J., & McGrath, P. S. (2002). Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 130, 1552–1561.CrossRefGoogle Scholar
  150. Watanabe, M. E. (1997). Phyto-remediation on the brink of commercialization. Environmental Science & Technology, 31, 182–186.CrossRefGoogle Scholar
  151. Wei, S. H., Zhou, Q. X., Wang, X., Cao, W., Ren, L. P., & Song, Y. F. (2004). Potential of weed species applied to remediation of soils contaminated with heavy metals. Journal of Environmental Science- China, 16, 868–873.Google Scholar
  152. Wenzel, W. W., Adriano, D. C., Salt, D., & Smith, R. (1999). Phytoremediation: A plant–microbe-based remediation system. In SSSA (Ed.), Bioremediation of Contaminated Soils (pp. 457–508). Madison, WI, USA: Agronomy Monograph no. 37, SSSA.Google Scholar
  153. WHO (1997). Health and environment in sustainable development. Geneva: WHOGoogle Scholar
  154. Williamson, A., & Johnson, M. S. (1981). Reclamation of metalliferous mine wastes. In N. W. Lepp (Ed.), Effect of heavy metal pollution on plants, vol. 2 (pp. 185–212). Barking, Essex, UK: Applied Science Publishers.Google Scholar
  155. Williams, A. C., Nascimento, W., Amarasiriwardena, D., & Xing, B. (2006). Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution, 140(1), 114–123.CrossRefGoogle Scholar
  156. Wu, J., Hsu, F. C., & Cuningham, S. D. (1999). Chelate assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints. Environmental Science & Technology, 33(11), 1898–1904.CrossRefGoogle Scholar
  157. Xiong, Y. H., Yang, X. E., Ye, Z. Q., & He, Z. L. (2004). Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 39, 2925–2940.CrossRefGoogle Scholar
  158. Xue, S. G., Chen, Y. X., Reeves, R. D., Baker, A. J., Lin, Q., & Fernando, D. R. (2004). Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environmental Pollution, 131, 393–399.CrossRefGoogle Scholar
  159. Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of The Total Environment, 368(2–3), 456–464.CrossRefGoogle Scholar
  160. Zaccheo, P., Crippa, L., & Pasta, V. D. (2006). Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower. Plant And Soil, 283(1–2), 43–56.CrossRefGoogle Scholar
  161. Zhu, Y. L., Zayed, A. M., Quian, J. H., De Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. Journal of Environmental Quality, 28, 339–344.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Soil ScienceUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Civil EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations