Advertisement

Water, Air, and Soil Pollution

, Volume 183, Issue 1–4, pp 293–308 | Cite as

Are Indicators for Critical Load Exceedance Related to Forest Condition?

  • Karin Hansen
  • Lars Vesterdal
  • Annemarie Bastrup-Birk
  • Jørgen Bille-Hansen
Article

Abstract

The aim of this study was to evaluate the suitability of the (Ca + Mg + K)/Al and the Ca/Al ratios in soil solution as chemical criteria for forest condition in critical load calculations for forest ecosystems. The tree species Norway spruce, Sitka spruce and beech were studied in an area with high deposition of sea salt and nitrogen in the south-western part of Jutland, Denmark. Throughfall and soil water were collected monthly and analysed for pH, NO3-N, NH4-N, K, Ca, Mg, DOC and Altot. Organic Al was estimated using DOC concentrations. Increment and defoliation were determined annually, and foliar element concentrations were determined every other year. The throughfall deposition was highest in the Sitka spruce stand (maximum of 40 kg N ha−1yr−1) and lowest in the beech stand (maximum of 11 kg N ha−1yr−1). The Sitka spruce stand leached on average 12 kg N ha−1yr−1 during the period 1988–1997 and leaching increased throughout the period. Only small amounts of N were leached from the Norway spruce stand whereas almost no N was leached from the beech stand. For all tree species, both (Ca + Mg + K)/Al and Ca/Al ratios decreased in soil solution at 90 cm depth between 1989 and 1999, which was mainly caused by a decrease in concentrations of base cations. The toxic inorganic Al species were by far the most abundant Al species at 90 cm depth. At the end of the measurement period, the (Ca + Mg + K)/Al ratio was approximately 1 for all species while the Ca/Al ratio was approximately 0.2. The lack of a trend in the increment rates, a decrease in defoliation as well as sufficient levels of Mg and Ca in foliage suggested an unchanged or even slightly improved health condition, despite the decreasing and very low (Ca + Mg + K)/Al and Ca/Al ratios. The suitability of these soil solution element ratios is questioned as the chemical criteria for soil acidification under field conditions in areas with elevated deposition rates of sea salts, in particular Mg.

Keywords

Acidification Base cations (Ca + Mg + K)/Al ratio Ca/Al ratio Critical load Defoliation Forest vitality and health N deposition N leaching N saturation Tree species Foliar concentrations 

Notes

Acknowledgements

The National Forest and Nature Agency and the European Commission funded the study. The authors would like to thank the laboratory staff at the Department of Applied Ecology, Forest & Landscape Denmark, for excellent field and laboratory work, and three unknown reviewers for helpful suggestions.

References

  1. Aber, J. D., McDowell, W., Nadelhoffer, K. J., Magill, A., Berntson, G., Kamakea, M., et al. (1998). Nitrogen saturation in temperate forest ecosystems. BioScience, 48, 921–934.CrossRefGoogle Scholar
  2. Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. BioScience, 39, 378–386.CrossRefGoogle Scholar
  3. Aherne, J., Farrell, E. P., Hall, J., Reynolds, B., & Hornung, M. (2001). Using multiple chemical criteria for CL of acidity in maritime regions. Water, Air & Soil Pollution. Focus, 1, 75–90.CrossRefGoogle Scholar
  4. Arp, P. A., & Strucel, I. (1989). Water uptake by black spruce seedlings from rooting media (solution, sand, peat) treated with inorganic and oxalated aluminium. Water, Air and Soil Pollution, 44, 75–90.CrossRefGoogle Scholar
  5. Asp, H., & Berggren, D. (1990). Phosphate and calcium uptake in beech (Fagus silvatica) in the presence of aluminium and natural fulvic acid. Physiologia Plantarum, 80, 307–314.CrossRefGoogle Scholar
  6. Bak, J., Tybirk, K., Gundersen, P., Jensen, J. P., Conley, D., & Hertel, O. (1999). Natur- og miljøeffekter af ammoniak. Ammoniakfordampning – Redegørelse no. 3 (in Danish). Denmark: Danmarks Miljøundersøgelser, 66 pp.Google Scholar
  7. Baur, S., & Feger, H. (1992). Importance of natural soil processes relative to atmospheric deposition in the mobility of aluminium in forested watersheds of the Black Forest. Environmental Pollution, 77, 99–105.CrossRefGoogle Scholar
  8. Bi, S. P., An, S. Q., Tang, W., Yang, M., Qian, H. F., & Wang, J. (2001). Modeling the distribution of aluminium speciation in acid soil solution equilibria with the mineral phase alunite. Environmental Geology, 41, 25–36.CrossRefGoogle Scholar
  9. Boudot, J. P., Becquer, T., Merlet, D., & Rouiller, J. (1994). Aluminum toxicity in declining forests: A general overview with a seasonal assessment in a silver fir forest in the Vosges mountains (France). Annales des Sciences Forestières, 51, 27–51.Google Scholar
  10. Brække, F. H. (1994). Diagnostiske grenseverdier for næringselementer i gran- og furunåler (in Norwegian). Aktuelt fra Skogsforsk, 15–94, 11 pp.Google Scholar
  11. Cronan, C. S., & Grigal, D. F. (1995). Use of calcium/aluminium ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality, 24, 209–226.CrossRefGoogle Scholar
  12. Derome, J., Lindroos, A.-J., & Lindgren, M. (2001). Soil acidity parameters and defoliation degree in six Norway spruce stands in Finland. Water, Air, & Soil Pollution. Focus, 1, 169–186.CrossRefGoogle Scholar
  13. de Wit, H., Mulder, J., Nygaard, P. H., Aamlid, D., Huse, M., & Kortnes, E., et al. (2001a). Aluminium: The need for a re-evaluation of its toxicity and solubility in mature forest stands. Water, Air, & Soil Pollution. Focus, 1, 103–118.Google Scholar
  14. de Wit, H., Mulder, J., Nygaard, P. H., & Aamlid, D. (2001b). Testing the aluminium toxicity hypothesis: A field manipulation experiment in mature spruce forest in Norway. Water, Air and Soil Pollution, 130, 995–1000.CrossRefGoogle Scholar
  15. Draaijers, G. P. J. (1993). The variability of atmospheric deposition to forests. Ph.D. Thesis, University of Utrecht, The Netherlands, 199 pp.Google Scholar
  16. Emmett, B. A., Reynolds, B., Stevens, P. A., Norris, D. A., Hughes, S., Görres, J., et al. (1993). Nitrate leaching from afforested Welsh catchments – Interactions between stand age and nitrogen deposition. Ambio, 22, 386–394.Google Scholar
  17. Foy, C. D. (1988). Plant adaptation to acid, aluminium-toxic soils. Communications in Soil Science and Plant Analysis, 19, 959–987.CrossRefGoogle Scholar
  18. Gjessing, E. T., Riise, G., Petersen, R. C., & Andruchow, E. (1989). Bioavailability of aluminium in the presence of humic substances at low and moderate pH. Science of the Total Environment, 81/82, 683–690.CrossRefGoogle Scholar
  19. Godbold, D. L., Dictus, K., & Hüttermann, A. (1988). Influence of aluminum and nitrate on root growth and mineral nutrition of Norway spruce (Picea abies) seedlings. Canadian Journal of Forest Research, 18, 1167–1171.Google Scholar
  20. Godbold, D. L., & Hüttermann, A. (1988). Aluminium toxicity and forest decline. Proceedings of the National Academy of Sciences of the United States of America, 85, 3888–3892.CrossRefGoogle Scholar
  21. Godbold, D. L., & Kettner, C. (1991). Use of root length elongation studies to determine aluminium and lead toxicity in Picea abies seedlings. Journal of Plant Physiology, 138, 231–235.Google Scholar
  22. Göransson, A., & Eldhuset, T. D. (1991). Effects of aluminium on growth and nutrient uptake of Picea abies and Pinus sylvestris plants. Trees, 5, 136–142.CrossRefGoogle Scholar
  23. Göransson, A., & Eldhuset, T. D. (1995). Effects of aluminium ions on uptake of calcium, magnesium and nitrogen in Betula pendula seedlings growing at high and low nutrient supply rates. Water, Air and Soil Pollution, 83, 351–361.CrossRefGoogle Scholar
  24. Göransson, A., & Eldhuset, T. D. (2001). Is the (Ca + Mg + K)/Al ratio in the soil solution a predictive tool for estimating forest damage? Water, Air & Soil Pollution. Focus, 1, 57–74.CrossRefGoogle Scholar
  25. Gundersen, P. (1991). Nitrogen deposition and the forest nitrogen cycle: Role of denitrification. Forest Ecology and Management, 44, 15–28.CrossRefGoogle Scholar
  26. Gundersen, P., Schmidt, I. K., Hansen, K., Pedersen, L. P., & Vesterdal, L. (2003). Nitrat i vand under skove. In K. Raulund-Rasmussen, & K. Hansen (Eds.), Vand fra skovene – Problemer og muligheder (in Danish), Skovbrugsserien no. 34 (pp. 31–60). Hørsholm, Denmark: Skov & Landskab.Google Scholar
  27. Hansen, K. (Ed.) (2003). Næringsstofkredsløb i skove – Ionbalanceprojektet (in Danish). Forest & Landscape Research no. 33, ISBN 87-7903-156-0, Forest & Landscape, Hørsholm, 300 pp.Google Scholar
  28. Hansen, K., Rosenqvist, L., Vesterdal, L., & Gundersen, P. (2007). Nitrate leaching from three afforestation chronosequences on former arable land in Denmark. Global Change Biology (in press).Google Scholar
  29. Hecht-Buchholz, C., Jorns, C. A., & Keil, P. (1987). Effect of excess aluminium and manganese on Norway spruce seedlings as related to magnesium nutrition. Journal of Plant Nutrition, 10(9–16), 1103–1110.Google Scholar
  30. Högberg, P., & Jensén, P. (1994). Aluminium and uptake of base cations by tree roots: A critique of the model proposed by Sverdrup et al. Water, Air and Soil Pollution, 75, 121–125.CrossRefGoogle Scholar
  31. Holmsgaard, E., & Bang, C. (1977). Et træartsforsøg med nåletræer, bøg og eg. De første 10 ȧr (In Danish). Forstlige Forsøgsæsen i Danmark, 35, 161–196.Google Scholar
  32. Kinraide, T. B. (1991). Identity of the rhizotoxic aluminum species. Plant and Soil, 134, 167–178.Google Scholar
  33. Kristensen, H. L., Gundersen, P., Callesen, I., & Reinds, G. J. (2004). Throughfall nitrogen deposition has different impacts on soil solution nitrate concentration in European coniferous and deciduous forests. Ecosystems, 7, 180–192.CrossRefGoogle Scholar
  34. Løkke, H., Bak, J., Falkengren-Grerup, U., Finlay, R. D., Ilvesniemi, H., Nygaard, P. H., et al. (1996). CL of acidic deposition for forest soils: Is the current approach adequate? Ambio, 25(8), 510–516.Google Scholar
  35. Makkink, G. F. (1957). Testing the Penmann formula by means of lysimeters. International Journal of Water Engineering, 11, 277–288.Google Scholar
  36. Miller, H. G., & Miller, J. D. (1988). Response to heavy nitrogen applications in fertilizer experiments in British forests. Environmental Pollution, 54, 219–231.CrossRefGoogle Scholar
  37. Mulder, J., van Breemen, N., & Eijck, H. C. (1989). Depletion of soil aluminium by acid deposition and implications for acid neutralization. Nature, 337, 247–249.CrossRefGoogle Scholar
  38. Mulder, J., van Grinsven, J. J. M., & van Breemen, N. (1987). Impacts of acid atmospheric deposition on woodland soils in the Netherlands. 3. Aluminum Chemistry. Soil Science Society of America Journal, 51(6), 1640–1646.CrossRefGoogle Scholar
  39. Nilsson, J., & Grennfelt, P. (Eds.) (1988). Critical loads for sulphur and nitrogen. Report from a workshop, Skokloster, Sweden, March 1988, Nordic Council of Ministers, Copenhagen, Miljørapport 15, 418 pp.Google Scholar
  40. Nilsson, S. I., & Bergkvist, B. (1983). Aluminium chemistry and acidification processes in a shallow podzol on the Swedish west coast. Water, Air and Soil Pollution, 20, 311–329.CrossRefGoogle Scholar
  41. Nordén, U. (1994). Influence of tree species on acidification and mineral pools in deciduous forest soils in south Sweden. Water, Air and Soil Pollution, 76, 363–381.CrossRefGoogle Scholar
  42. Nygaard, P. H., & de Wit, H. (2004). Effects of elevated soil solution Al concentrations on fine roots in a middle-aged spruce (Picea abies (L.) Karst.) stand. Plant and Soil, 265, 131–140.CrossRefGoogle Scholar
  43. Örlander, G., Westling, O., & Petterson, P. (1994). Markvattens innehåll av baskatjoner och aluminum och dess påverkan på tillväxt och kådflöde i kraftigt försurad granskog. Institutet för Vatten- och Luftvårdsforskning, Rapport B 1155 (in Swedish).Google Scholar
  44. Oulehle, F., & Hruska, J. (2005). Tree species (Picea abies and Fagus sylvatica) effects on soil water acidification and aluminium chemistry at sites subjected to long-term acidification in the Ore Mts., Czech Republic. Journal of Inorganic Biochemistry, 99, 1822–1829.CrossRefGoogle Scholar
  45. Pannatier, E. G., Luster, J., Zimmermann, S., & Blaser, P. (2005). Acidification of soil solution in a Chestnut forest stand in Southern Switzerland: Are there signs of recovery? Environmental Science and Technology, 39(20), 7761–7767.CrossRefGoogle Scholar
  46. Petersen, L. B. (1993). Stofkredsløb i sitkagran, rødgran og bøgebevoksninger i Danmark (in Danish). Research Centre for Forest & Landscape, Ministry of Agriculture, Forskningsserien no. 1, 252 pp.Google Scholar
  47. Richter, D. D., Markewitz, D., Heine, P. R., Jin, V., Raikes, J., Tian, K., et al. (2000). Legacies of agriculture and forest regrowth in the nitrogen of old-field soils. Forest Ecology and Management, 138, 233–248.CrossRefGoogle Scholar
  48. Robertson, S. M. C., Hornung, M., & Kennedy, V. H. (2000). Water chemistry of throughfall and soil water under four tree species at Gisburn, northwest England, before and after felling. Forest Ecology and Management, 129, 101–117.CrossRefGoogle Scholar
  49. Roelofs, J. G. N., Kempers, A. J., Houdik, A. L. F. M., & Jansen, J. (1985). The effect of airborne ammonium sulphate on Pinus nigra var. maritima in the Netherlands. Plant and Soil, 84, 45–56.CrossRefGoogle Scholar
  50. SAS Institute Inc. (2000). SAS/STAT User's Guide Version 8, Vol. 1–3. SAS Institute Inc., Cary, North Carolina, USA.Google Scholar
  51. Schaedle, M., Thornton, F. C., Raynal, D. J., & Tepper, H. B. (1989). Response of tree seedlings to aluminium. Tree Physiology, 5, 337–356.Google Scholar
  52. Skeffington, R. (1999). The use of critical loads in environmental policy making: A critical appraisal. Environmental Science & Technology. News, 33, 245–252.Google Scholar
  53. Stefan, K., Fürst, A., Hacker, R., & Bartels, U. (1997). Forest foliar condition in Europe – Results of large-scale foliar chemistry surveys 1995. Brussels, Geneva: UNECE, 218 pp.Google Scholar
  54. Strand, L. (Ed.) (1997). Monitoring the environmental quality of Nordic forests. Nord, ISBN 92-893-0076-0. Agriculture and Forestry, Environment, 14, 1–77.Google Scholar
  55. Sverdrup, H., & de Vries, W. (1994). Calculating critical loads for acidity with the simple mass balance method. Water, Air and Soil Pollution, 72, 143–162.CrossRefGoogle Scholar
  56. Sverdrup, H., & Warfwinge, P. (1993). The effect of soil acidification on the growth of trees, grass and herbs as expressed by the (Ca + Mg + K)/Al ratio. Lund University, Department of Chemical Engineering II, Report 2 :1993, ISSN 1104-2877, KF-Sigma, Lund, 177 pp.Google Scholar
  57. Ulrich, B. (1981). Eine ökosystemare hypothese über die ursachen des tannensterbens (Abies alba Mill.). Forstwissenschaftliches Centralblatt, 100, 228–236.Google Scholar
  58. Ulrich, B. (1983). An ecosystem oriented hypothesis on the effect of air pollution on forest ecosystems. In G. Persson, & A. Jernelöv (Eds.), Ecological effects of acid deposition (pp. 221–231). Stockholm: Swedish Environmental Protection Board, SNV-PM 1636.Google Scholar
  59. Ulrich, B., & Matzner, E. (1983). Abiotische Folkewirkungen der weitraumigen Ausbreitung von Luftverumreinigung. Umweltforschungsplan der Bundesminister der Innern. Forschungsbericht 10402615, BRD, 221 pp.Google Scholar
  60. UN-ECE (1998). Manual on methods and criteria for harmonised sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Hamburg: Programme Coordinating Centre, Federal Research Centre for Forestry and Forest Products, 4th edn.Google Scholar
  61. Van den Burg, J. (1985). Foliar analysis for determination of tree nutrient status – A compilation of literature data. De Dorschkamp, Wageningen, The Netherlands: Institute for Forestry and Urban Ecology, 615 pp.Google Scholar
  62. Van den Burg, J. (1990). Foliar analysis for determination of tree nutrient status – A compilation of literature data, 2. Literature 1985–1989. De Dorschkamp, Wageningen, The Netherlands: Institute for Forestry and Urban Ecology, Report no. 591, 220 pp.Google Scholar
  63. Wauer, G., Heckemann, H.-J., & Koschel, R. (2004). Analysis of toxic aluminium species in natural waters. Mikrochimica Acta, 146(2), 149–154.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Karin Hansen
    • 1
  • Lars Vesterdal
    • 1
  • Annemarie Bastrup-Birk
    • 2
  • Jørgen Bille-Hansen
    • 3
  1. 1.Department of Applied Ecology, Forest & Landscape DenmarkUniversity of CopenhagenHoersholmDenmark
  2. 2.Land Management Unit, Institute for Environment & Sustainability, Joint Research CentreEuropean CommissionIspra (Varese)Italy
  3. 3.Service DepartmentDanish Institute of Agricultural SciencesAarslevDenmark

Personalised recommendations