Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ectomycorrhizal Fungi and Associated Bacteria Provide Protection Against Heavy Metals in Inoculated Pine (Pinus Sylvestris L.) Seedlings

  • 294 Accesses

  • 33 Citations


The roles of ectomycorrhizal fungi and bacteria associated with corresponding fungal species in distribution of heavy metals within roots and shoots of inoculated pine (Pinus sylvestris L.) seedlings were determined in this study. The mycorrhizal fungi forming different morphotypes were identified by PCR-RFLP using respective primers for an internal spacer transcribed region (ITS) of fungal rDNA. Amongst five fungal species detected, three were identified as Scleroderma citrinum, Amanita muscaria and Lactarius rufus. These fungi used for inoculation of pine seedlings significantly reduced translocation of Zn(II), Cd(II) or Pb(II) from roots to shoots, and the pattern of metal-accumulation was dependent on the fungal species. Ectomycorrhizae-associated bacteria identified as Pseudomonas were used as an additional component of the pine inoculation. These dual root inoculations resulted in higher accumulation of the metals, especially Zn(II), in the roots compared to the inoculation with fungal species alone. Consequently, dual inoculation of pine seedlings could be a suitable approach for plant protection against heavy metals and successful planting of metal-polluted soils.

This is a preview of subscription content, log in to check access.

Figure 1


  1. Adriaensen, K., van der Lelie, D., van Laere, A., Vangronsveld, J., & Colpaert. J. V. (2003). A zinc-adapted fungus protect pines from zinc stress. New Phytologist, 161, 549–555.

  2. Anderson, I. C., & Cairney, J. W. G. (2004). Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environmental Microbiology, 6, 769–779.

  3. Anderson, I. C., Campbell, C. D., & Prosser, J. I. (2003). Diversity of fungi in organic soils under a moorland – Scots pine (Pinus sylvestris L.) gradient. Environmental Microbiology, 5, 1121–1132.

  4. Barea, J. M., Azcón, R., & Azcón-Aguilar, C. (2002). Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek, 81, 343–351.

  5. Bruins, M. R., Kapll, S., & Oetme, F. W. (2000). Microbial resistance in the environment. Ecotoxicology and Environmental Safety, 45, 198–207.

  6. Choi, S. H., & Gu, M. B. (2002). A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria. Biosensors & Bioelectronics, 17, 433–440.

  7. Colpaert, J. V., & van Assche, J. A. (1992). Zinc toxicity in ectomycorrhizal Pinus sylvestris’. Plant Soil, 143, 201–211.

  8. Colpaert, J. V., & van Assche, J. A. (1993). The effects of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytologist, 123, 325–333.

  9. Dickie, I. A., Xu, B., & Koide, R. T. (2002). Vertical distribution of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytologist, 156, 527–535.

  10. Fomina, M. A., Alexander, I. J., Colpaert, J. V., & Gadd, G. M. (2005). Solubilization of toxic minerals and metal tolerance of mycorrhizal fungi. Soil Biology & Biochemistry, 37, 851–866.

  11. Founoune, H., Duponnois, R., Bâ, A. M., Sall, S., Branget, I., Lorquin, J., et al. (2002). Mycorrhiza Helper Bacteria stimulate ectomycorrhizal symbiosis of Accacia holosericea with Pisolitus albus. New Phytologist, 153, 81–89.

  12. Frey, P., Frey-Klett, P., Garbaye, J., Berge, O., & Heulin, T. (1997). Metabolic and genotyping fingerprinting of fluorescent pseudomonads associated with Douglas-fir-Laccaria bicolor mycorrhizosphere. Applied and Environmental Microbiology, 63, 1852–1860.

  13. Frey-Klett, P., Chavatte, M., Clausse, M. L., Courrier, S., Le Roux, Ch., Raaijmakers, J., et al. (2005). Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytologist, 165, 317–328.

  14. Frey-Klett, P., Pierrat, J. C., & Garbaye, J. (1997). Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Applied and Environmental Microbiology, 63, 139–144.

  15. Gaad, G. M. (1996). Influence of microorganisms on the environmental fate of radionuclides. Endeavour, 20, 150–156.

  16. Garbaye, J. (1994). Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytologist, 128, 197–210.

  17. Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.

  18. Gilis, A., Corbisier, P., Baegens, W., Taghavi, S., Mergeay, M., & van der Lelie, D. (1998). Effect of the siderophore alcaligen E on the bioavailability of Cd to Alcaligenes eutrophus CH36. Journal of Industrial Microbiology & Biotechnology, 20, 61–68.

  19. Hartley-Whitaker, J., Cairney, J. W. G., & Meharg, A. A. (2000). Sensitivity to Cd or Zn of host and symbiont of ectomycorrhizal Pinus sylvestris L. (Scots pine) seedlings. Plant Soil, 218, 31–42.

  20. Horton, T. R., & Bruns, T. D. (2001). The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology, 10, 1855–1871.

  21. Jentschke, G., & Godbold, D. L. (2000). Metal toxicity and ectomycorrhizas. Physiologia Plantarum, 109, 107–116.

  22. Khan, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., & Hayes, W. J. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contamination land remediation. Chemosphere, 21, 197–207.

  23. Kim, C. G., Power, S. A., & Bell, J. N. B. (2004). Response of Pinus sylvestris seedlings to cadmium and mycorrhizal colonization. Water, Air and Soil Pollution, 155, 189–203.

  24. Kozdrój, J. (2000). Microflora of technogenous wastes characterized by fatty acid profiling. Microbiological Research, 155, 149–156.

  25. Krupa, P., & Kozdrój, J. (2004). Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World Journal of Microbiology & Biotechnology, 20, 427–430.

  26. Landeweert, R., Leeflang, P., Kuyper, T. W., Hoffland, E., Rosling, A., Wernars, K., et al. (2003). Molecular identification of ectomycorrhizal mycelium in soil horizons. Applied and Environmental Microbiology, 69, 327–333.

  27. Landeweert, R., Leeflang, P., Smit, E., & Kuyper, T. (2005). Diversity of an ectomycorrhizal fungal community studied by a root tip and total soil DNA approach. Mycorrhiza, 15, 1–6.

  28. Lendin, M. (2000). Accumulation of metals by microorganisms – processes and importance for soil systems. Earth Sci. Rev. 51, 1–31.

  29. Leyval, C., Turnau, K., & Haselwandter, K. (1997). Effect of heavy metal pollution on mycorrhizal colonization and function: physiollogical, ecological and applied aspects. Mycorrhiza, 7, 139–153.

  30. Meharg, A. A., & Cairney, J. W. G. (2000). Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Advances in Ecological Research, 30, 69–112.

  31. Mogge, B., Loferer, C., Agerer, R., Hutzler, P., & Hartman, A. (2000). Bacterial community structure and colonization patterns of Fagus sylvatica L. ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza, 9, 271–278.

  32. Poole, E. J., Bending, G. D., Whipps, J. M., & Read, D. J. (2001). Bacteria associated with Pinus sylvestrisLactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytologist, 151, 743–751.

  33. Vivas, A., Azcón, R., Biró, B., Barea, J. M., & Ruiz-Lozano, J. M. (2003). Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Canadian Journal of Microbiology, 49, 577–588.

Download references

Author information

Correspondence to J. Kozdrój.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krupa, P., Kozdrój, J. Ectomycorrhizal Fungi and Associated Bacteria Provide Protection Against Heavy Metals in Inoculated Pine (Pinus Sylvestris L.) Seedlings. Water Air Soil Pollut 182, 83–90 (2007). https://doi.org/10.1007/s11270-006-9323-7

Download citation


  • ectomycorrhizal fungi
  • heavy metal accumulation
  • pine inoculation
  • Pseudomonas inoculation
  • recultivation