Water, Air, and Soil Pollution

, Volume 181, Issue 1–4, pp 265–279 | Cite as

Monitoring of Organic Compounds and Trace Metals During a Dredging Episode in the Göta Älv Estuary (SW Sweden) Using Caged Mussels

  • Juan Bellas
  • Rolf Ekelund
  • Halldór Pálmar Halldórsson
  • Matz Berggren
  • Åke Granmo


The concentrations of selected trace metals, organotins, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) were determined in caged blue mussels (Mytilus edulis) during dredging operations in the Göta Älv Estuary (SW Sweden). Maximum values of pollutants in mussel tissues were found after the dredging started. Our results showed that the dredging caused mobilization of organotins from the sediments to the water column during the experimental period. Multidimensional scaling (MDS) and cluster analysis were applied to compare and establish relationships between levels of pollutants in mussels and sampling sites during the experimental period. In order to evaluate the biological effects of contaminants, genotoxic damage was measured using the Comet assay, and its potential application for environmental monitoring is discussed.


Mytilus edulis dredging operations bioaccumulation metals organic pollutants monitoring 



Authors are indebted to I. Cato for providing sediment data and to S. Jacobsson for supplying mussels. We would like to thank K. Alexandersson for his invaluable help during the field research. We also aknowledge M. Magnusson and K. Tryman. J.B. was supported by a Postdoctoral Fellowship from the Spanish Foundation Fundación Ramón Areces.


  1. Adams, W. J. (1995). Aquatic toxicology testing methods. In D. J. Hoffman, B. A. Rattner, G. A. Burton, Jr., & J. Cairns, Jr. (Eds.), Handbook of ecotoxicology (pp. 25–46). Boca Raton, Florida:Lewis.Google Scholar
  2. Axelman, J., Næs, K., Näf, C., & Broman, D. (1999). Accumulation of polycyclic aromatic hydrocarbons in semipermeable membrane devices and caged mussels (Mytilus edulis L.) in relation to water column phase distribution. Environmental Toxicology and Chemistry, 18(11), 2454–2461.CrossRefGoogle Scholar
  3. Baumard, P., Budzinski, H., & Garrigues, P. (1998). PAHs in Arcachon Bay, France: Origin and biomonitoring with caged organisms. Marine Pollution Bulletin, 36(8), 577–586.CrossRefGoogle Scholar
  4. Baumard, P., Budzinski, H., Garrigues, P., Narbonne, J. F., Burgeot, T., Michel, X., et al. (1999). Polycyclic aromatic hydrocarbon (PAH) burden of mussels (Mytilus sp.) in different marine environments in relation with sediment PAH contamination, and bioavailability. Marine Environmental Research, 47, 415–439.CrossRefGoogle Scholar
  5. Beiras, R., Bellas, J., Fernández, N., Lorenzo, J. I., & Cobelo-García, A. (2003b). Assessment of coastal marine pollution in Galicia (NW Iberian Peninsula); metal concentrations in seawater, sediments and mussels (Mytilus galloprovincialis) versus embryo-larval bioassays using Paracentrotus lividus and Ciona intestinalis. Marine Environmental Research, 56, 531–553.CrossRefGoogle Scholar
  6. Beiras, R., Fernández, N., Bellas, J., Besada, V., González-Quijano, A., & Nunes, T. (2003a). Integrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel bioaccumulation, and embryo-larval toxicity bioassays. Chemosphere, 52, 1209–1224.CrossRefGoogle Scholar
  7. Brack, K. (2002). Organotin compounds in sediments from the Göta Älv Estuary. Water, Air, and Soil Pollution, 135, 131–140.CrossRefGoogle Scholar
  8. Bryan, G. W., & Gibbs, P. E. (1991). Impact of low concentrations of tributyltin (TBT) on marine organisms: A review. In M. Newman & A. W. McIntosh, (Eds.), Metal ecotoxicology: Concepts and applications (pp. 323–353). Chelsea, MI: Lewis.Google Scholar
  9. Burns, K. A., & Smith, J. L. (1981). Biological monitoring of ambient water quality: The case for using bivalves as sentinel organisms for monitoring petroleum pollution in coastal waters. Estuarine Coastal and Shelf Science, 13, 433–443.CrossRefGoogle Scholar
  10. Campbell, P. G. C., & Tessier, A. (1996). Ecotoxicology of metals in the aquatic environment: Geochemical aspects. In M. C. Newman & C. H. Jagoe (Eds.), Ecotoxicology: A hierarchical treatment (pp. 11–58). Boca Raton, FL: Lewis.Google Scholar
  11. Carr, R. S., Long, E. R., Windom, H. L., Chapman, D. C., & Thursby, G. (1996). Sediment quality assessment studies of Tampa Bay, Florida. Environmental Toxicology and Chemistry, 15(7), 1218–1231.CrossRefGoogle Scholar
  12. Cato, I. (2000). Toxic substances and environmental quality of the Bohus Coast 1990–1998. – trends, load and relationships. Geological Survey of Sweden, SGU Rapporter och meddelanden 103, Uppsala, ISBN 91-7158-641-5, 135 p. (In Swedish, abstract in English).Google Scholar
  13. Cato, I. (2006). Environmental quality and trends in sediment and biota along the Bohus Coast in 2000/2001: A report from seven trend-monitoring programmes. Geological Survey of Sweden, SGU. Rapporter och meddelanden 122, Uppsala, ISBN 91-7158-702-0, 490 p. (In Swedish abstract in English).Google Scholar
  14. Chase, M. E., Jones, S. H., Hennigar, P., Sowles, J., Harding, G. C. H., Freeman, K., et al. (2001). Gulfwatch: Monitoring spatial and temporal patterns of trace metal and organic contaminants in the Gulf of Maine (1991–1997) with the blue mussel, Mytilus edulis L. Marine Pollution Bulletin, 42(6), 491–505.CrossRefGoogle Scholar
  15. Cheung, C. C. C., Zheng, G. J., Lam, P. K. S., & Richardson, B. J. (2002). Relationships between tissue concentrations of chlorinated hydrocarbons (polychlorinated biphenyls and chlorinated pesticides) and antioxidative responses of marine mussels, Perna viridis. Marine Pollution Bulletin, 45, 181–191.CrossRefGoogle Scholar
  16. Collins, A. R., Dobson, V. L., Dusinska, M., Kennedy, G., & Stetina, R. (1997). The Comet assay: What can it really tell us? Mutation Research – Fundamental and Molecular Mechanisms of Mutagenesis, 375, 183–193.CrossRefGoogle Scholar
  17. Connell, D., Lam, P., Richardson, B., & Wu, R. (1999). Introduction to ecotoxicology (170 p.). London, UK: Blackwell Science.Google Scholar
  18. De la Cruz, M. A. T., & Molander, S. (1998). Butyltins in marine sediments from the Swedish West Coast. Report 1998:1, Department of Technical Environmental Planning, Chalmers University of Technology, Götebog, 14 p.Google Scholar
  19. Depledge, M. H., Aagaard, A., & Gyorkos, P. (1995). Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers. Marine Pollution Bulletin, 31, 1927.CrossRefGoogle Scholar
  20. Dowson, P. H., Bubb, J. M., & Lester, J. N. (1993). Temporal distribution of organotins in the aquatic environment: Five years after the 1987 U.K. Retail Ban on TBT-based antifouling paints. Marine Pollution Bulletin, 26(9), 487–494.CrossRefGoogle Scholar
  21. Farrington, J. W., Goldberg, E. D., Risebrough, R. W., Martin, J. H., & Bowen, V. T. (1983). U.S. “Mussel Watch” 1976–1978: An overview of the trace-metal, DDE, PCB, hydrocarbon, and artificial radionuclide data. Environmental Science and Technology, 17, 490–496.CrossRefGoogle Scholar
  22. Fichet, D., Radenac, G., & Miramand, P. (1998). Experimental studies of impacts of harbour sediments resuspension to marine invertebrates larvae: Bioavailability of Cd, Cu, Pb and Zn and toxicity. Marine Pollution Bulletin, 36(7–12), 509–518.CrossRefGoogle Scholar
  23. Goosens, H., & Zwolsman, J. J. G. (1996). An evaluation of the behaviour of pollutants during dredging activities. Terra et Aqua, 62, 20–28.Google Scholar
  24. Green, N. W., & Knutzen, J. (2003). Organohalogens and metals in marine fish and mussels and some relationships to biological variables at reference localities in Norway. Marine Pollution Bulletin, 46, 362–377.CrossRefGoogle Scholar
  25. Harino, H., Fukushima, M., & Kawai, S. (1999). Temporal trends of organotin compounds in the aquatic environment of the Port of Osaka, Japan. Environmental Pollution, 105, 1–7.CrossRefGoogle Scholar
  26. Hartmann, A., & Speit, G. (1997). The contribution of cytotoxicity to DNA – effects in the single cell gel test (comet assay). Toxicology Letters, 90, 183–188.CrossRefGoogle Scholar
  27. Henriksen, P., Andersen, J., Carstensen, J., Christiansen, T., Conley, D., Dahl, K., et al. (2001). Marine områder 2002 – Miljøtilstand og udvikling. NOVA 2003. National Environmental Research Institute, Denmark. NERI Technical Report No. 375. Available from http://www.faglige-rapporter.dmu.d (In Danish).
  28. Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling. Beverly Hills, CA: Sage.Google Scholar
  29. Lamberson, J. O., DeWitt, T. H., & Swartz, R. C. (1992). Assessment of sediment toxicity to marine benthos. In G. A. Burton, Jr. (Ed.), Sediment toxicity assessment (pp. 183–211). Boca Raton, FL: Lewis.Google Scholar
  30. Landrum, P. F., Harkey, G. A., & Kukkonen, J. (1996). Evaluation of organic contaminant exposure in aquatic organisms: The significance of bioconcentration and bioaccumulation. In M. C. Newman & C. H. Jagoe (Eds.), Ecotoxicology: A hierarchical treatment (pp. 85–131.). Boca Raton, FL: Lewis.Google Scholar
  31. Long, E. R., Robertson, A., Wolfe, D. A., Hameedi, J., & Sloane, G. M. (1996). Estimates of the spatial extent of sediment toxicity in major U.S. estuaries. Environmental Science and Technology, 30, 3585–3592.CrossRefGoogle Scholar
  32. Lorenzo, J. I., Aierbe, E., Mubiana, V. K., Blust, R., & Beiras, R. (2003). Indications of regulation on copper accumulation in the blue mussel Mytilus edulis. In A. Villalba, B. Reguera, J. L. Romalde, & R. Beiras (Eds.), Molluscan Shellfish Safety (pp. 533–544). Xunta de Galicia: UNESCO.(ISBN 844533638).Google Scholar
  33. Martel, P., Kovacs, T., Voss, R., & Megraw, S. (2003). Evaluation of caged freshwater mussels as an alternative method for environmental effects monitoring (EEM) studies. Environmental Pollution, 124, 471–483.CrossRefGoogle Scholar
  34. Mitchelmore, C. L., Birmelin, C., Chipman, J. K., & Livingstone, D. R. (1998). Evidence for cytochrome P-450 catalysis and free radical involvement in the production of DNA strand breaks by benzo[a]pyrene and nitroaromatics in mussel (Mytilus edulis L.) digestive gland cells. Aquatic Toxicology, 41, 193–212.CrossRefGoogle Scholar
  35. Mitchelmore, C. L., & Chipman, J. K. (1998). DNA strand breakage in aquatic organisms and the potential value of the comet assay in environmental monitoring. Mutation Research, 399, 135–147.Google Scholar
  36. Nacci, D., Nelson, S., Nelson, W., & Jackim, E. (1992). Application of the DNA alkaline unwinding assay to detect DNA strand breaks in marine bivalves. Marine Environmental Research, 33, 83–100.CrossRefGoogle Scholar
  37. OSPAR Commission (2000). Quality status report 2000 (108 p). London, UK: OSPAR Commission.Google Scholar
  38. Page, D. S., Dassanayake, T. M., & Gilfillan, E. S. (1996). Relationship between tissue concentrations of tributyltin and shell morphology in field populations of Mytilus edulis. Bulletin of Environmental Contamination and Toxicology, 56, 500–504.CrossRefGoogle Scholar
  39. Page, D. S., & Widdows, J. (1991). Temporal and spatial variation in levels of alkyltins in mussel tissues: A toxicological interpretation of field data. Marine Environmental Research, 32, 113–129.CrossRefGoogle Scholar
  40. Petersen, W., Willer, E., & Williamowski, C. (1997). Remobilization of trace elements from polluted anoxic sediments after resuspension in oxic water. Water Air and Soil Pollution, 99, 515–522.Google Scholar
  41. Port of Göteborg AB (2004). http://www.portgot.se.
  42. Radenac, G., Miramand, P., & Tardy, J. (1997). Search for impact of a dredged material disposal site on growth and metal contamination of Mytilus edulis (L.) in Charente-Maritime (France). Marine Pollution Bulletin, 34(9), 721–729.CrossRefGoogle Scholar
  43. Rainbow, P. S., & Phillips, D. J. H. (1993). Cosmopolitan biomonitors of trace metals. Marine Pollution Bulletin, 26(11), 593–601.CrossRefGoogle Scholar
  44. Romeó, M., Hoarau, P., Garello, G., Gnassia-Barelli, M., & Girard, J. P. (2003). Mussel transplantation and biomarkers as useful tools for assessing water quality in the NW Mediterranean. Environmental Pollution, 122, 369–378.CrossRefGoogle Scholar
  45. Salazar, M. H., & Salazar, S. M. (1995). In-situ bioassays using transplanted mussels: I. Estimating chemical exposure and bioeffects with bioaccumulation and growth. In G. R. Biddinger, E. Mones, & J. S. Hughes (Eds.), Environmental toxicology and risk assessment – vol. III (pp. 216–241). Philadelphia, PN: American Society for Testing and Materials.Google Scholar
  46. Salazar, M. H., & Salazar, S. M. (1998). Using caged bivalves as part of an exposure-dose-response triad to support an integrated risk assessment strategy. In A. de Peyster, & K. Day (Eds.), Proceedings – ecological risk assessment: A meeting of policy and science (pp. 167–192). Pensacola, FL: SETAC.Google Scholar
  47. Sericano, J. L., Wade, T. L., Jackson, T. J., Brooks, J. M., Tripp, B. W., Farrington, J. W., et al. (1995). Trace organic contamination in the Americas: An overview of the US National Status and Trends and the International “Mussel Watch” programs. Marine Pollution Bulletin, 31, 214–225.CrossRefGoogle Scholar
  48. Shin, P. K. S., & Fong, K. Y. S. (1999). Multiple discriminant analysis of marine sediment data. Marine Pollution Bulletin, 39(1–12), 285–294.CrossRefGoogle Scholar
  49. Shugart, L. (1990). Biological monitoring: Testing for genotoxicity. In J. F. McCarthy, & L. R. Shugart, (Eds.), Biomarkers of environmental contamination (pp. 217–227). Chelsey, MI: Lewis.Google Scholar
  50. Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175, 184–191.CrossRefGoogle Scholar
  51. Simpson, S. L., Apte, S. C., & Bately, G. E. (1998). Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediments. Environmental Science and Technology, 32, 620–625.CrossRefGoogle Scholar
  52. SMHI (The Swedish Meteorological and Hydrological Institute) (2001). The Skagerrak: Environmental state and monitoring prospects. In B. Karlson, B. Håkansson & B. Sjöberg (Eds.), Forum Skagerrak. Amsterdam, The Netherlands: Elsevier.(ISBN 91-89507-04-5, Göteborg, 118 p.)Google Scholar
  53. Steinert, S. A., Streib Montee, R., & Sastre, M. P. (1998). Influence of sunlight on DNA damage in mussels exposed to polycyclic aromatic hydrocarbons. Marine Environmental Research, 46, 355–358.CrossRefGoogle Scholar
  54. Strand, J., Jacobsen, J. A., Pedersen, B., & Granmo, Å. (2003). Butyltin compounds in sediment and molluscs from the shipping strait between Denmark and Sweden. Environmental Pollution, 124(1), 7–15.CrossRefGoogle Scholar
  55. Toro, B., Palma-Fleming, H., & Navarro, J. M. (2004). Organic pollutant burden of the giant mussels Choromytilus chorus from the south-central Chilean coast. Chemosphere, 55, 267–275.CrossRefGoogle Scholar
  56. Tramontano, J. M., & Bohlen, W. F. (1984). The nutrient and trace metal geochemistry of a dredge plume. Estuarine Coastal and Shelf Science, 18, 385–401.CrossRefGoogle Scholar
  57. Van den Berg, G. A., Meijers, G. G. A., Van der Heijdt, L. M., & Zwolsman, J. J. G. (2001). Dredging-related mobilisation of trace metals: A case study in the Netherlands. Water Research, 35(8), 1979–1986.CrossRefGoogle Scholar
  58. Voie, Ø. A., Johnsen, A., & Rossland, H. K. (2002). Why biota still accumulate high levels of PCB after removal of PCB contaminated sediments in a Norwegian fjord. Chemosphere, 46, 1367–1372.CrossRefGoogle Scholar
  59. Widdows, J., Burns, K. A., Menon, N. R., Page, D. S., & Soria, S. (1990). Measurement of physiological energetics (scope for growth) and chemical contaminants in mussels (Arca zebra) transplanted along a contamination gradient in Bermuda. Journal of Experimental Marine Biology and Ecology, 138, 99–117.CrossRefGoogle Scholar
  60. Widdows, J., & Donkin, P. (1992). Mussels and environmental contaminants: Bioaccumulation and physiological aspects. In E. M. Gosling (Ed.), The mussel mytilus: Ecology, physiology, genetics and culture (pp. 383–424). Amsterdam, The Netherlands: Elsevier.Google Scholar
  61. Widdows, J., Donkin, P., Brinsley, M. D., Evans, S. V., Salkeld, P. N., Franklin, A., et al. (1995). Scope for growth and contaminant levels in North Sea mussels Mytilus edulis. Marine Ecology Progress Series, 127, 131–148.Google Scholar
  62. Widdows, J., Donkin, P., Staff, F. J., Matthiessen, P., Law, R. J., Allen, Y. T. et al. (2002). Measurement of stress effects (scope for growth) and contaminant levels in mussels (Mytilus edulis) collected from the Irish Sea. Marine Environmental Research, 53(4), 327–356.CrossRefGoogle Scholar
  63. Wilson, J. T., Pascoe, P. L., Parry, J. M., & Dixon, D. R. (1998). Evaluation of the Comet assay as a method for the detection of DNA damage in the cells of a marine invertebrate, Mytilus edulis L. (Mollusca: Pelecypoda). Mutation Research – Fundamental and Molecular Mechanisms of Mutagenesis, 399, 87.CrossRefGoogle Scholar
  64. Zar, J. H. (1984). Biostatistical analysis (2nd ed.). London, UK: Prentice-Hall.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Juan Bellas
    • 1
    • 3
  • Rolf Ekelund
    • 1
  • Halldór Pálmar Halldórsson
    • 2
  • Matz Berggren
    • 1
  • Åke Granmo
    • 1
  1. 1.Kristineberg Marine Research StationFiskebäckskilSweden
  2. 2.Institute of BiologyUniversity of IcelandSandgerðiIceland
  3. 3.Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar. Edificio de Ciencias ExperimentaisUniversidade de VigoVigoSpain

Personalised recommendations