Water, Air, and Soil Pollution

, Volume 180, Issue 1–4, pp 213–223 | Cite as

Principle and Process of Biofiltration of Cd, Cr, Co, Ni & Pb from Tropical Opencast Coalmine Effluent

  • Alka R. UpadhyayEmail author
  • B. D. Tripathi


Opencast coalmine effluent contains higher concentrations of Cd, Cr, Co, Ni and Pb. Biofiltration of these metals has been demonstrated successfully with the help of aquatic macrophytes i.e., E. crassipes, L. minor and A. pinnata. Experiments revealed E. crassipes reduced highest concentration of heavy metals followed by L. minor and A. pinnata on 20th days retention period. Plant tissue analysis revealed higher accumulation of metals in roots than leaves. Highly significant correlations have been noted between removal of heavy metals in effluent and their accumulation in roots and leaves of the experimental sets. Translocation factor also revealed lower transportation of metals from root to leaves. Reduction in chlorophyll and protein content was noted with the accumulation of heavy metals. N, P and K analysis in plant tissues indicated continuous decrease in their concentration with increasing metal concentration. Negative and significant correlations between metal accumulation and N, P and K concentrations in plant tissues showed adverse effects of heavy metals. Analysis of variance (Dunnett t-test) showed significant results (p < 0.001) for all the metals in different durations.


opencast coalmine heavy metal biofiltration, aquatic macrophytes accumulation translocation 



Authors are thankful to Council of Scientific and Industrial Research, New Delhi for financial assistance.


  1. Abdel-Basset, R., Issa, A. A., & Adam, M. S. (1995). Chlorophylase activity: Effect of heavy metals and calcium. Photosynthetica, 31, 421–425.Google Scholar
  2. Ait Ali, N., Bernal M. P., & Alter, M. (2002). Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant and Soil, 239, 103–111.CrossRefGoogle Scholar
  3. Antunes, A. P. M., Watkins, G. M., & Duncan, J. R. (2001). Batch studies on removal of gold(III) from aqueous solution by Azolla filiculoides. Biotechnologies, 23, 249–251.Google Scholar
  4. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1–15.Google Scholar
  5. Asthana, D. K., & Asthana, M. (2003). Environment-problems & solutions. New Delhi: S.Chand & Ramnagar.Google Scholar
  6. Axtell, N. R., Sternberg, P. K. Steven, N., & Claussen, K. (2003). Lead and nickel removal using Microspora and Lemna minor. Bioresource Technology, 89(1), 41–48.CrossRefGoogle Scholar
  7. Azcue, J. M., & Nriagu, J. O. (1994). Arsenic: Historical perspectives. In J. O. Nriagu (Ed.), Arsenic in the environment, Part I: Cycling and characterization (pp. 1–15). New York: Wiley.Google Scholar
  8. Baker, A. J. M. (1981). Accumulators and excluders – Strategies in response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.Google Scholar
  9. Beckett, P. H. T., & Davis R. D. (1977). Upper critical levels of toxic elements in plants. New Phytol, 79, 95–106.CrossRefGoogle Scholar
  10. Borkert, C. N., Cox, F. R., & Tucker M. R. (1988). Zinc and copper toxicity in peanut, soybean, rice and corn in soil mixtures. Communications in Soil Science and Plant Analysis, 29, 2991–3005.Google Scholar
  11. Breckle, S. W., & Kahle, H. (1992). Effects of toxic heavy metals (Cd, Pb) on growth and mineral nutrition of beech. Vegetation, 101, 43–53.CrossRefGoogle Scholar
  12. Cacador, I, Vale, C., & Catarino, F. (2000). Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root sediment system of Spartina maritima and Halimone partulacoides from Tagus estuary salt marshes. Marine Environmental Research, 49, 279–290.CrossRefGoogle Scholar
  13. Cohen-Shoel, N., Barkay, Z., Ilzycer, D., Gilath, L., & Tel-Or, E. (2002). Biofiltration of toxic elements by Azolla biomass. Water, Air, and Soil Pollution, 135, 93–104.CrossRefGoogle Scholar
  14. Cordwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes fron southeast Queensland, Australia. Chemosphere, 48, 653–663.CrossRefGoogle Scholar
  15. Das, P., Samantary, S., & Rout, G. R. (1997). Studies on cadmium toxicity in plants: A review. Environmental Pollution, 98, 29–36.CrossRefGoogle Scholar
  16. Davies, F. T., Puryear, J. D., Newton, R. J., Egilla, J. N., & Grossi J. A. S. (2002). Mycorrhizal fungi increase chromium uptake by sunflower plants: Influence on tissue mineral concentration, growth, and gas exchange. Journal of Plant Nutrition, 25, 2389–2407.CrossRefGoogle Scholar
  17. De, A. K. (2004). Environmental chemistry. Daryaganj, New Delhi: New Age International.Google Scholar
  18. Dietz, K. J., Tavakoli, N., Kluge, C., Mimura, T., Sharma, S. S., & Harris, G. C. (2001). Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. Journal of Experimental Botany, 52, 1969–1980.CrossRefGoogle Scholar
  19. Dushenkov, V., Kumar, P. B. A. N., Motto, H., & Raskin, I. (1995). Rhizofilteration the use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology, 29, 1239–1245.CrossRefGoogle Scholar
  20. EMP Bina (2004). Environmental Management Plan of Bina Coalmine Project, Northern Coalfields Ltd. India.Google Scholar
  21. Ewais, E. A. (1997). Effects of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds. Biologia Plantarum, 39, 403–410.CrossRefGoogle Scholar
  22. Fitzgerald, E. J., Caffrey, J. M., Neasaratnam, S. T., & McLoughlim, P. (2003). Copper and lead concentration in salt marsh plants on the Suir Estuary, Ireland. Environmental Pollution, 123, 67–74.CrossRefGoogle Scholar
  23. Fogarty, R. V., Dostalek, P., Patzak, M., Votruba, J., Tel-Or, E., & Tobin, J. M. (1999). Metal removal by immobilized and non-immobilized Azolla filiculoides. Biotechnology Techniques, 13, 53–538.CrossRefGoogle Scholar
  24. Forstner, U., & Wittmann, G. T. W. (1979). Metal pollution in the aquatic environment. Berlin Heidelberg New York: Springer.Google Scholar
  25. Fritioff, A., Kautsky, L., & Greger M. (2005). Influence of temp. and salinity on heavy metal uptake by submersed plants. Environmental Pollution, 133, 265–274.CrossRefGoogle Scholar
  26. Gaur, J. P., Noraho, N., & Chauhan, Y. S. (1994). Relationship between heavy metal accumulation and toxicity in Spirodela polyrhiza (L.) Schleid. and Azolla pinnata R. Br. Aquatic Botany, 49, 183–192.CrossRefGoogle Scholar
  27. Gaur, S., Singhal, P. K., & Hasija, S. K. (1992). Relative contributions of bacteria and fungi to water hyacinth decomposition. Aquatic Botany, 43, 1–15.CrossRefGoogle Scholar
  28. Haider, S. Z., Malik, K. M., Rahman, M. M., & Ali, M. A. (1983). Pollution Control by water hyacinth. In G. Thyagarajan (Ed.), Proceedings of the International Conference on Water hyacinth (pp. 627–634). India: Hyderabad.Google Scholar
  29. Jackson, M. L. (1962). Soil chemical analysis, Inc. (pp. 183–190). Englewood Cliffs, New Jersey, USA: Prentice Hall.Google Scholar
  30. Kaufaman, D. B. (1970). Acute potassium dichromate poisoning in man. American Journal of Diseases of Children, 119, 374–379.Google Scholar
  31. Kelly, C., Mielke, R. E., Dimaquabo, D., Curtis, A. J., & Dewitt, J. G. (1999). Adsorption of Eu (III) onto roots of water hyacinth. Environmental Science & Technology, 33, 1439–1443.CrossRefGoogle Scholar
  32. Landberg, T., & Greger, M. (1996). Difference in uptake and tolerance to heavy metal in Salix from unpolluted and polluted areas. Applied Geochemistry, 11, 175–180.CrossRefGoogle Scholar
  33. Long, X. X., Yang, X. E., Ni, W. Z., Ye, Z. Q., He, Z. L., Calvert, D. V., et al. (2003). Assessing zinc thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Communications in Soil Science and Plant Analysis, 34, 1421–1434.CrossRefGoogle Scholar
  34. Lowry, O. H., Rosebraugh, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin–phenol reagent. Journal of Biological Chemistry, 193, 265–275.Google Scholar
  35. Lytle, M. C., Lytle, F. W., Yang, N., Qian, J., Hansen, D., & Zayed, A. (1998). Reduction of Cr (VI) to Cr (III) by wetland plants: Potential for in situ heavy metal detoxification. Environmental Science & Techology, 32, 3087–3093.CrossRefGoogle Scholar
  36. Mallick, N., Shardendu, & Rai, L. C. (1996). Removal of heavy metals by two free floating aquatic macrophytes. Biomedical and Environmental Sciences, 9(4), 399–407.Google Scholar
  37. Manios, T., Stentiford, E. I., & Millner, P. A. (2003). The effects of heavy metal accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecological Engineering, 20, 65–74.CrossRefGoogle Scholar
  38. Mendelssohn, I. A., McKee, K. L., & Kong, T. (2001). A comparison of physiological indicators of sublethal cadmium stress in wetland plants. Environmental and Experimental Botany, 46, 263–275.CrossRefGoogle Scholar
  39. Mireles, A., Solis, C., Andrade, E., Lagunas-Solar, M., Pina, C., & Flocchini, R. G. (2004). Heavy metal accumulation in plants and soil irrigated with wastewater from Mexico City. Nuclear Instruments & Methods in Physics Research B, 1 (219–220), 187–190.CrossRefGoogle Scholar
  40. Mo, S. C., Choi, D. S., & Robinson, J. W. (1988). A study of the uptake by duckweed of aluminium, copper and lead from aqueous solution. Journal of Environmental Science and Health, 23(2), 139–156.Google Scholar
  41. Muramoto, S., & Oki, Y. (1983). Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Bulletin of Environmental Contamination and Toxicology, 30, 170–177.CrossRefGoogle Scholar
  42. Murozono, K., Ishii, K., Yamazaki, H., Matsuyama, S., & Iwasaki, S. (1999). PIXE spectrum analysis taking into account bremsstrahlung spectra. Nuclear Instruments & Methods in Physics Research B, 150, 76–82.CrossRefGoogle Scholar
  43. Nalewajko, C. (1995). Effects of cadmium and metal contaminated sediments on photosynthesis, heterophy and phosphate uptake in Mackenzie river delta phytoplankton. Chemosphere, 30, 1401–1414.CrossRefGoogle Scholar
  44. Noraho, N., & Gaur J. P. (1996). Cadmium adsorption and intracellular uptake by two macrophytes, Azolla pinnata and Spirodela polyrhiza. Archiv fuer Hydrobiologie, 136(1), 135–144.Google Scholar
  45. Padinha, C., Santos, R., & Brown, M. T. (2000). Evaluating environmental contamination in Ria Formosa (Portugal) using stress indexes of Spartina maritime. Marine Environmental Research, 49, 67–78.CrossRefGoogle Scholar
  46. Peach, K., & Tracey M. V. (1956). Modern methods of plant analysis, Vol. 1. Berlin Heidelberg New York: Springer.Google Scholar
  47. Peverly, J. H., Surface, J. M., & Wang, T. (1995). Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment. Ecological Engineering, 5, 21–35.CrossRefGoogle Scholar
  48. Prasad, M. N. V., & de Oliveira Freitas, H. M. (2003). Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6(3), 1–21.Google Scholar
  49. Rahmani, G. N. H., & Sternberg, S. P. K. (1999). Bioremoval of lead from water using Lemna minor. Bioresource Technology, 70, 225.CrossRefGoogle Scholar
  50. Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Science of the Total Environment, 281, 87–98.CrossRefGoogle Scholar
  51. Shen, Z. G., & Liu,Y. L. (1998). Progress in the study on the plants that hyperaccumulate heavy metal. Plant Physiology Communications, 34, 133–139.Google Scholar
  52. Smith, R. G., & Lec, D. H. K. (1972). Chromium in metallic contaminants and human health. New York: Academic.Google Scholar
  53. Spearot, R. M., & Peck, J. R. (1984). Recovery process for complexed copper bearing rinse waters. Environmental Progress, 3, 124–129.CrossRefGoogle Scholar
  54. Standard Methods for Examination of Water and Wastewater (1995). American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, D.C.Google Scholar
  55. Technical Report of Khadia Coal Mine (2005). Environmental Management Plan of Khadia Coalmine Project, Northern Coalfields Ltd. India.Google Scholar
  56. Tordoff, G. M., Baker, A. J. M., & Willis, A. J. (2000). Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41, 219–228.CrossRefGoogle Scholar
  57. Upadhyay, Alka, R., Mishra, V. K., & Rai, P. K. (2006). Biofiltration of wastewaters contaminated with mining effluent. In proceedings of Environ.Manag. challenges in 21st century. Department of Botany, B.H.U., Varanasi, India.Google Scholar
  58. Vesk, P. A., Nockolds, C. E., & Allaway, W. G. (1999). Metal localization in water hyacinth roots from an urban wetland. Plant Cell & Environment, 22, 149–158.CrossRefGoogle Scholar
  59. William, J. B. (2002). Phytoremediation in wetland ecosystem: Progress, problems and potential. Critical Reviews in Plant Sciences, 21, 607–635.CrossRefGoogle Scholar
  60. Windham, L., Weis, J. S., & Weis, P. (2002). Patterns of decomposition and metal uptake of plant litter of Spartina alterniflora and Pharagmites australis in an urban estuary. SETAC Annual Meeting Presentation, Nov. 16–20 Salt Lake City, UT.Google Scholar
  61. Winterbourn, M. J., McDiffett, W. F., & Eppley, S. J. (2000). Aluminium and iron burdens of aquatic biota in New Zealand streams contaminated by acid mine drainage: Effects of trophic level. Science of the Total Environment, 254, 45–54.CrossRefGoogle Scholar
  62. Wolverton, B. C., & McDonald, R. C. (1976). Water hyacinth for removing chemicals and pollutants from laboratory wastewater. NASA. Technical Memorandum.Google Scholar
  63. Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780.CrossRefGoogle Scholar
  64. Yahya, M. N. (1990). The absorption of metal ions by Eichhornia crassipes. Chemical Speciation and Bioavailability, 2, 82–91.Google Scholar
  65. Ye, Z. H., Whiting, S. N., Lin, Z. Q., Lytle, C. M., Qian, J. H., & Terry, N. (2001). Removal and distribution of iron, manganese, cobalt and nickel within a Pennsylvania constructed wetland treating coal combustion by product leachate. Journal of Environmental Quality, 30, 1464–1473.CrossRefGoogle Scholar
  66. Zaranyika, M. F., & Ndapwadza, T. (1995). Uptake of Ni, Zn, Fe, Co, Cr, Pb, Cu and Cd by water hyacinth in Mukuvisi and Manyame rivers, Zimbabwe. Journal of Environmental Science and Health A, 30, 157–169.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Pollution Ecology Research Laboratory, CAS BotanyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations