Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

An Overview of Nitrogen Critical Loads for Policy Makers, Stakeholders, and Industries in the United States

Abstract

Critical load values are calculated to determine ecosystem responses to deposition in a given area; these values may act as a tool to identify sensitive ecosystems in further need of protection. This overview provides an introduction to nitrogen critical loads for policy makers and parties involved in managing nitrogen deposition including electric utility generators, transportation managers and automobile manufacturers, and large-scale agricultural operators in the United States. It examines the use of the critical loads concept in European nations for establishing policy guidelines, current research on nitrogen critical loads in the U.S., and the development of nitrogen critical loads modeling and mapping.

This is a preview of subscription content, log in to check access.

References

  1. Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. Bioscience, 39, 378–386.

  2. Aber, J. D., Magill, A., McNulty, S. G., Boone, R. D., Nadelhoffer, K. J. & Downs, M., et al. (1995). Forest biogeochemistry and primary production altered by nitrogen saturation. Water, Air, and Soil Pollution, 85, 1665–1670.

  3. Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., et al. (1998). Nitrogen saturation in temperate forest ecosystems. Bioscience, 48, 921–934.

  4. Aber, J., Ollinger, S. V., Driscoll, C. T., Likens, G. E., Holmes, R. T., & Freuder, R. J., et al. (2002). Inorganic nitrogen losses from a forested ecosystem in response to physical, chemical, biotic, and climatic perturbations. Ecosystem, 5, 648–658.

  5. Achermann, B., Bobbink, R. (Eds.) (2003). Expert workshop on empirical critical loads for nitrogen deposition on (semi-) natural ecosystem (327 pp.). Swiss Agency for the Environment, Forests, and Landscape; Environmental Documentation No. 164. Berne, Switzerland: Swiss Agency for the Environment, Forests, and Landscape.

  6. Adams, M. B. (2003). Ecological issues related to N deposition to natural ecosystems: Research needs. Environment International, 29, 189–199.

  7. Aherne, J., & Farrell, E. P. (2002). Steady state critical loads of acidity for sulfur and nitrogen: a multi-receptor, multi-criterion approach. Science of the Total Environment, 288, 183–197.

  8. Aherne, J., Ryan, D., de Kluizenaar, Y., & Farrell, E.P. (2000). Literature review of the current state of knowledge regarding the calculation and mapping of critical loads: Determination and mapping of critical loads for sulfur and nitrogen and critical levels for ozone in Ireland (40 pp.). FERG No. 45. Dublin: Environmental Protection Agency.

  9. Andersson, M. (1988). Toxicity and tolerance of aluminum in vascular plants. Water, Air, and Soil Pollution, 39, 439–462.

  10. Anderson, N., Strader, R., & Davidson, C. (2003). Airborne reduced nitrogen: ammonia emissions from agriculture and other sources. Environment International, 29, 277–286.

  11. Barker, M., Van Miegroet, H., Nicholas, N. S., & Creed, I. F. (2002). Variation in overstory nitrogen uptake in a small, high-elevation southern Appalachian spruce-fir watershed. Canadian Journal of Forest Research, 32, 1741–1752.

  12. Baron, J. S., Rueth, H. M., Wolfe, A. M., Nydick, K. R., Allstott, E. J., & Minear, J. T. et al. (2000). Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems, 3, 352–368.

  13. Baumgardner, Jr. R. E., Lavery, T. F., Rogers, C. M., & Isil, S. S. (2002). Estimates of the atmospheric deposition of sulfur and nitrogen species: Clean Air Status and Trends Network, 1990–2000. Environmental Science & Technology, 36, 2614–2629.

  14. Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.

  15. Brooks, M. L. (2003). Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. Journal of Applied Ecology, 40, 344–353.

  16. Bulger, A. J., Cosby, B. J., Dolloff, C. A., Eshleman, K. N., Webb, J. R., Galloway, J. N. (1999). The “Shenandoah National Park: Fish in Sensitive Habitats (SNP: FISH)” Project. Final Report. Vols. I–IV plus interactive computer model. (CD available from John F. Karish, National Park Service, Northeast Field Area, 209B Ferguson Building, University Park, PA 16802-4301, U.S.A.).

  17. Bulger, A. J., Cosby, B. J., & Webb, J. R. (2000). Current, reconstructed past, and projected future status of brook trout (Salvelinus fontinalis) streams in Virginia. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1515–1523.

  18. Bull, K. R. (1992). An introduction to critical loads. Environmental Pollution, 77, 173–176.

  19. Bull, K. R., & Hall, J. R. (1998). Setting international targets for controlling atmospheric emissions of pollutants – now and in the future. Environmental Pollution, 102(S1), 581–589.

  20. Corbin, J. D., Avis, P. G., & Wilbur, R. B. (2003). The role of phosphorus availability in the response of soil nitrogen cycling, understory vegetation, and arbuscular mycorrhizal inoculum potential to elevated nitrogen levels. Water, Air, and Soil Pollution, 147, 141–161.

  21. Cronan, C. S., & Grigal, D. F. (1995). Use of calcium and aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality, 24, 209–226.

  22. Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., & Eager, C., et al. (2001). Acidic deposition in the Northeastern United States: Sources and inputs, ecosystem effects, and management strategies. Bioscience, 51, 180–198.

  23. Driscoll, C. T., Whitall, D., Aber, J., Boyer, E., Castro, M., & Cronan, C., et al. (2003). Nitrogen pollution: sources and consequences in the U.S. Northeast. Environment, 45, 9–22.

  24. [EPA] Environmental Protection Agency (1995). Acid deposition standard feasibility study (120 pp.). Report to Congress. EPA 430-R-001a. Washington, DC: U.S. Government Printing Office.

  25. Fangmeier, A., Hadwiger-Fangmeier, A., Van der Eerden, L., & Jager, H. (1994). Effects of atmospheric ammonia on vegetation – a review. Environmental Pollution, 86, 43–82.

  26. Fenn, M. E., Baron, J. S., Allen, E. B., Rueth, H. M., Nydick, K. R., & Geiser, L., et al. (2003a). Ecological effects of nitrogen deposition in the Western United States. Bioscience, 53, 404–419.

  27. Fenn, M. E., Haeuber, R., Tonnesen, G. S., Baron, J. S., Grossman-Clarke, S., & Hope, D., et al. (2003b). Nitrogen emissions, deposition, and monitoring in the western United States. Bioscience, 53, 391–403.

  28. Fenn, M. E., Poth, M. A., Aber, J. D., Baron, J. S., Bormann, B. T., & Johnson, D. W., et al. (1998). Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8(3), 706–733.

  29. Freer-Smith, P. H., & Kennedy, F. (2003). Base cation removal in harvesting and biological limit terms for use in the simple mass balance equation to calculate critical loads for forest soils. Water, Air, and Soil Pollution, 145, 409–427.

  30. Frelich, L. E., Bockheim, J. G., & Leide, J. E. (1988). Historical trends in tree-ring growth and chemistry across an air-quality gradient in Wisconsin. Canadian Journal of Forest Research, 19, 113–121.

  31. Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., & Cowling, E. B., et al. (2003). The nitrogen cascade. Bioscience, 53, 341–355.

  32. Galloway, J. N., & Cowling, E. B. (2002). Reactive nitrogen and the World: 200 years of change. Ambio, 31, 64–71.

  33. Gbondo-Tugbawa, S. S., & Driscoll, C. T. (2001). Evaluation of an integrated biogeochemical model (PnET-BGC) at a northern hardwood forest ecosystem. Water Resource Research, 37, 1057–1070.

  34. Gilliam, F. S. Adams, M. B., & Yurish, B. M. (1996). Ecosystem nutrient responses to chronic nitrogen inputs at Fernow Experimental Forest, West Virginia. Canadian Journal of Forest Research, 26, 196–205.

  35. Godish, T. (1991). Air quality (422 pp.). Chelsea, MI: Lewis Publishers, Inc.

  36. Goodale, C. L., Aber, J., & McDowell, W. H. (2000). The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems, 3, 433–450.

  37. Goodale, C. L., Aber, J. D., & Vitousek, P. M. (2003). An unexpected nitrate decline in New Hampshire Streams. Ecosystems, 6, 75–86.

  38. Goodale, C. L., Lajtha, K., Nadelhoffer, K. J., Boyer, E. W., & Jaworski, N. A. (2002). Forest nitrogen sinks in large eastern U.S. watersheds: estimates from forest inventory and an ecosystem model. Biogeochemistry, 57/58, 239–266.

  39. Hall, J., Reynolds, B., Langan, S., Hornung, M., Kennedy F., & Aherne, J. (2001). Investigating the uncertainties in the simple mass balance equation for acidity critical loads for terrestrial ecosystems in the United Kingdom. Water, Air, & Soil Pollution. Focus, 1, 43–56.

  40. Holmberg, M., Mulder, J., Posch, M., Starr, M., Forsinus, M., & Johansson, M., et al. (2001). Critical loads of acidity for forest soils: tentative modifications. Water, Air, & Soil Pollution. Focus, 1, 91–101.

  41. Howarth, R. W., Boyer, E. W., Pabich, W. J., & Galloway, J. N. (2002). Nitrogen use in the United States from 1961–2000 and potential future trends. Ambio, 31, 88–96.

  42. Houlton, B. Z., Driscoll, C. T., Fahey, T. J., Likens, G. E., Groffman, P. M., & Bernhardt, E. S., et al. (2003). Nitrogen dynamics in ice storm-damaged forest ecosystems: Implications for nitrogen limitation theory. Ecosystems, 6, 431–443.

  43. Hunsaker, C., Graham, R., Turner, R. S., Ringold, P. L., Holdren, Jr., G. R., & Strickland T. C. (1993). A national critical load framework for atmospheric deposition effects assessment: II. Defining assessment end points, indicators, and functional sub-regions. Environmental Management, 17, 335–341.

  44. [ICP] International Cooperative Programme, Modeling and Mapping (1996). Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded. UBA-Texte 71/96.

  45. [ICP] International Cooperative Programme, Modeling and Mapping (2004). Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded. UBA-Texte 52/04.

  46. Jeffries, D. S., & Ouimet, R. (2004). Critical loads: Are they Being Exceeded? In H. Morrison (Ed.), Canadian Acid Deposition Science Assessment (pp. 341–343). Meteorological Service of Canada. Ontario, Canada: Environment Canada.

  47. Jeffries, D. S., Ouimet, R., Aherne, J., Arp, P. A., Balland, V., & Demerchant, I., et al. (2004). Critical load values and exceedances. In H. Morrison (Ed.), Canadian acid deposition science assessment (pp. 350–366). Ontario, Canada: Environment Canada, Meteorological Service of Canada.

  48. Joslin, J. D., Kelly, J. M., & Van Miegroet, H. (1992). Soil chemistry and nutrition of North American spruce-fir stands: Evidence for recent change. Journal of Environmental Quality, 21, 12–30.

  49. Kawecka, B., & Galas, J. (2003). Diversity of epilithic diatoms in high mountain lakes under the stress of acidification (Tatra Mts, Poland). Annales de Limnologie - International Journal of Limnology, 39, 239–253.

  50. Kennedy, F., Rowell, D., Moffat, A. J., & Singh, B. (2001). An analysis of the structure of the simple mass balance equation: implications for testing national critical loads maps. Water, Air, & Soil Pollution. Focus, 1, 281–298.

  51. Korhola, A., Weckstrom, J., & Nyman, M. (1999). Predicting the long-term acidification trends in small subarctic lakes using diatoms. Journal of Applied Ecology, 36, 1021–1034.

  52. Kuylenstierna, J. C. I., Hicks, W. K., Cinderby, S., & Cambridge, H. (1998). Critical loads for nitrogen deposition and their exceedance at European scale. Environmental Pollution, 102(S1), 591–598.

  53. Laane, R. W. P. M. (2005). Applying the critical load concept to the nitrogen load of the river Rhine to the Dutch coastal zone. Estuarine Coastal and Shelf Science, 62, 487–493.

  54. Lehmann, C. M. B., Bowersox, V. C., & Larson, S. M. (2005). Spatial and temporal trends of precipitation chemistry in the United States, 1985–2002. Environmental Pollution, 135, 347–361.

  55. Lilleskov, E. A., Fahey, T. J., Horton, T. R., & Lovett, G. A. (2002). Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology, 83, 104–115.

  56. Lovett, G. M., Weathers, K. C., & Arthur, M. A. (2002). Control of nitrogen loss from forested watersheds by soil carbon: Nitrogen ratio and tree species composition. Ecosystems, 5, 712–718.

  57. Lynch, J. A., & Kerchner, M. (2005). The National Atmospheric Deposition Program: 25 years of monitoring in support of science and policy: An ammonia workshop: the state of science and future needs. Environmental Pollution, 135, 343–346.

  58. Maier, R. M., Pepper, I. L., & Gerba C. P. (Eds.) (2000). Environmental Microbiology. San Diego, CA: Academic.

  59. McLaughlin, S. B., & Kohut, R. J. (1992). The effects of atmospheric deposition and ozone on carbon allocation and associated physiological processes in red Spruce. In C. Eager & M.B. Adams (Eds.), Ecology and decline of red spruce in the eastern United States (366 pp.). New York, NY: Springer-Verlag.

  60. McNulty, S. G., Aber, J. D., & Newman, S. D. (1996). Nitrogen saturation in a high elevation New England spruce-fir stand. Forest Ecology and Management, 84, 109–121.

  61. Michalzik, B., Kalbitz, K., Park, J.-H., Solinger, S., & Matzner, E. (2001). Fluxes and concentrations of dissolved organic carbon and nitrogen – A synthesis for temperature forests. Biogeochemistry, 52, 173–205.

  62. Morrison, H. (2004). Canadian acid deposition science assessment. In H. Morrison (Ed.) (pp.9–10). Ontario, Canada: Environment Canada, Meteorological Service of Canada.

  63. NEGTAP [National Expert Group on Transboundary Air Pollution]. (2001). Transboundary air pollution: acidification, eutrophication, and ground level ozone in the UK. UK Department for Environmental, Food, and Rural Affairs (DEFRA). http://www.nbu.ac.uk/negtap/.

  64. Nilsson, J., & Grennfelt, P. (1988). Critical loads for sulfur and nitrogen. Proceedings of workshop on critical loads for sulfur and nitrogen. United Nations Economic Council for the Environment and Nordic Council of Ministers, Skokloster, Sweden.

  65. [NPS] National Park Service. (2000). Federal Land Managers’ Air Quality Related Values Workgroup (FLAG) (Phase I Report). Lakewood, CO, NPS, U.S.: Department of Interior, Air Resources Division.

  66. [NRCS] National Resource Conservation Service. (1992). Agricultural waste management field handbook: USDA-NRCS National Engineering Handbook (NEH): Part 651. U.S. Department of Agriculture, Natural Resources Conservation Service

  67. Pardo, L. H., & Driscoll, C. T. (1996). Critical loads for nitrogen deposition: case studies at two northern hardwood forests. Water, Air, and Soil Pollution, 89, 105–128.

  68. Pardo, L. H., Driscoll, C. T., & Likens, G. E. (1995). Patterns of nitrate loss from a chronosequence of clear-cut watersheds. Water, Air, and Soil Pollution, 85, 1659–1664.

  69. Porter, E., Blett, T., Potter, D. U., & Huber, C. (2005). Protecting resources on federal lands: implications of critical loads for atmospheric deposition of nitrogen and sulfur. Bioscience, 55, 603–612.

  70. Posch, M., de Smet, P. A. M., Hettelingh, J. P., & Downing, R. J. (1995). Calculation and mapping of critical thresholds in Europe: Status Report 1995 (RIVM Report No. 259101004). Bilthoven, The Netherlands: Coordination Center for Effects, National Institute of Public Health and the Environment.

  71. Posch, M., de Smet, P. A. M., Hettelingh, J. P., & Downing, R. J. (2001). Calculation and mapping of critical thresholds in Europe: Status Report 2001 (RIVM Report No. 259101010). Bilthoven, The Netherlands: Coordination Center for Effects, National Institute of Public Health and the Environment.

  72. Posch, M., Hettelingh, J. P., Slootweg, J., & Downing, R. J. (2003). Calculation and mapping of critical thresholds in Europe: Status Report 2003 (RIVM Report No. 259101013). Bilthoven, The Netherlands: Coordination Center for Effects, National Institute of Public Health and the Environment.

  73. Raynal, D. J., Joslin, J. D., Thornton, F. C., Schaedle, M., & Henderson, G. S. (1990). Sensitivity of deciduous and coniferous tree species to Al: III. Red spruce and loblolly pine. Journal of Environmental Quality, 19, 163–171.

  74. Reuss, J. O., & Johnson, D. W. (1986). Acid deposition and the acidification of soils and waters. Ecological studies 59 (pp. 119). New York: Springer-Verlag.

  75. [SAMI] Southern Appalachian Mountain Initiative. (2002). SAMI Final Report. Southern Appalachian Mountain Initiative, Asheville, NC.

  76. Schaberg, P. G., DeHayes, D. H., Hawley, G. J., Murakami, P. F., Strimbeck, G. R., & McNulty, S. G. (2002). Effects of chronic N fertilization on foliar membranes, cold tolerance, and carbon storage in montane red spruce. Canadian Journal of Forest Research, 32, 1351–1359.

  77. Skeffington, R. A. (1999). The use of critical loads in environmental policy making: a critical appraisal. Environmental Science & Technology, 33, 245A–252A.

  78. Stevens, C. J., Dise, N. B., Mountford, J. O., & Gowing, D. J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876–1879.

  79. Stoddard, J. L. (1994). Long-term changes in watershed retention of nitrogen: Its causes and aquatic consequences. In L. A. Baker (eds.), Environmental chemistry of lakes and resevoirs (pp. 223–284). Advances in Chemistry Series No. 237. Columbus, OH: American Chemical Society.

  80. Strickland, T. C., Holdren, Jr., G. R., Ringold, P. L., Bernard, D., Smythe, K., & Fallon, W. (1993). A national critical loads framework for atmospheric deposition effects assessment I. Method summary. Environmental Management, 17, 329–334.

  81. Suding, K. N., Collins, S. L., Gough, L., Clark, C.; Cleland, E. E., & Gross, K. L., et al. (2005). Functional and abundance-based mechanisms explain diversity loss due to nitrogen fertilization. Proceedings of the National Academy Science of the United States of America, 102, 4387–4392.

  82. Sullivan, T. J., Cosby, B. J., Lawrence, J. A., Dennis, R. L., Savig, K., & Webb, J. R., et al. (2003). Assessment of air quality and relative values in Shenandoah National Park. Washington, DC: U.S. Government Printing Office (NPS/NERCHAL/NRTR-03/090).

  83. Sverdrup H., de Fries W., & Henriksen A. (1990). Mapping critical load. (Miljorapport 1990: 12, 124 pp.). Copenhagen: Nordic Council of Ministers.

  84. Sverdrup, H., Warfvinge, P., & Britt, D. (1996). Assessing the potential for forest effects due to soil acidification in Maryland. Water, Air, and Soil Pollution, 87, 245–265.

  85. Sverdrup, H., Warfvinge, P., Rabenhorst, M., Janicki, A., Morgan, R., & Bowman, M. (1992). Critical loads and steady-state chemistry for streams in the state of Maryland. Environmental Pollution, 77, 195–203.

  86. Takemoto, B., Croes, B. E., Brown, S. M., Motallebi, N., Westerdahl, F. D., & Margolis, H. G., et al. (1995). Acidic deposition in California: Findings from a program of monitoring and effects research. Water, Air, Soil and Pollution, 85, 261–272.

  87. Vitousek, P. M., & Reiners, W. A. (1975). Ecosystem succession and nutrient retention: A hypothesis. Bioscience, 25, 376–381.

  88. Watmough, S. A., Aherne, J., & Dillon P. J. (2005). Effect of declining lake base cation concentration on freshwater critical load calculations. Environmental Science & Technology, 39, 3255–3260.

  89. Watmough, S. A., & Dillon, P. J. (2002). The impact of acid deposition and forest harvesting on lakes and their forested catchments in south central Ontario: A critical loads approach. Hydrology and Earth System Sciences, 6, 833–848.

  90. Watmough, S. A. & Dillon P. J. (2003). Do critical load models adequately protect forests? A case study in south-central Ontario. Canadian Journal of Forest Research, 33, 1544–1556.

  91. Williams, M. W., Baron, J. S., Caine, N., Sommerfeld, R., & Sanford, Jr., R. (1996). Nitrogen saturation in the Rocky Mountains. Environmental Science & Technology, 30, 640–646.

  92. Williams, M. W. & Tonnessen, K. A. (2000). Critical loads for inorganic nitrogen deposition in the Colorado front range, U.S.A. Ecological Applications, 10, 1648–1665.

Download references

Author information

Correspondence to L. S. Fisher.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fisher, L.S., Mays, P.A. & Wylie, C.L. An Overview of Nitrogen Critical Loads for Policy Makers, Stakeholders, and Industries in the United States. Water Air Soil Pollut 179, 3–18 (2007). https://doi.org/10.1007/s11270-006-9235-6

Download citation

Keywords

  • chemical criteria limit
  • critical loads
  • nitrogen deposition
  • simple mass balance