Water, Air, and Soil Pollution

, Volume 177, Issue 1–4, pp 441–455 | Cite as

Tiber River Quality in the Stretch of a Sewage Treatment Plant: Effects of River Water or Disinfectants to Daphnia and Structure of Benthic Macroinvertebrates Community

  • Daniela Mattei
  • Stefano Cataudella
  • Laura Mancini
  • Lorenzo Tancioni
  • Luciana MiglioreEmail author


The evaluation of Tiber River quality, in a stretch including a sewage treatment plant, has been carried out by the contemporary evaluation of water effect on Daphnia and benthic macroinvertebrates community structure. To achieve a good status of a river water by the end of 2015, as provided in the Water Framework Directive (WFD) 2000/60/EC, is necessary to know the quality starting point. To this end, several endpoints are expected by the WFD, including Daphnia toxicity test and macroinvertebrate community analysis.

River water sampling was conducted in the four seasons, from upstream to downstream a sewage treatment plant. I endpoint. At the outfall of the sewage treatment plant, river water showed very high acute toxicity to Daphnia only in summer; some toxic effect can be found also upstream in spring. Results at the outfall were consistent with the hypothesis that disinfectants, mainly used in summer to treat discharging waters, are responsible of river water acute toxicity: Daphnia tests with each disinfectant (NaClO, PAA, ClO2) showed high toxicity.

River waters were also utilized in Daphnia reproduction tests. Samples at the outfall (excluding the summer one, undoubtedly toxic) caused slight reduction in survival and fecundity. Disinfectants were also checked in reproduction tests. Still at NOEC24h, they caused a significant toxicity on both death rate and reproduction.

II endpoint. Macroinvertebrate benthic community composition was evaluated upstream and downstream the sewage treatment plant, on these data Extended Biotic Index (EBI), was determined to get a score as quality class. A reduction of water quality score was found downstream the plant, one season delayed (autumn) respect the acute test on Daphnia.

Effect of disinfectant discharge, river dilution capability on a short spatial scale and use of different endpoints are discussed in term of river stretch quality.


daphnia acute/reproduction toxicity biological quality index chlorine dioxide peracetic acid sodium hypochlorite Tiber River 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banchetti, R., Marsili, D., & Galleni, L. (2004). Ecological modelling: from the biosphere to the everyday data gathering; filling the gap. Rivista di Biologia, 97(3), 469–82Google Scholar
  2. Blatchley, E. R. III, Hunt, B. A., Duggirala, R., Thompson, J. E., Zhao, J., Halaby, T., Cowger, R. L., Straub, C. M., & Alleman, J. E. (1997). Effects of disinfectants on wastewater sediment toxicity, Water Research, 31(7), 1581–1588CrossRefGoogle Scholar
  3. Boyle, T. P., Smillie, G. M., Anderson, J. C., & Beeson D. R. (1990). A sensitivity analysis of nine diversity and seven similarity indices, Journal – Water Pollution Control Federation, 165(62), 749–762Google Scholar
  4. Brack, W., Altenburger R., Ensenbach, U., Moder, E., Segner, H., & Schuurmann, G. (1999). Bioassay-Directed Identificatio of Organic Toxicants in River Sediment in the Industrial Region of Bitterfeld (Germany)–-A Contribution to Hazard Assessment. Archives of Environment Contamination and Toxicology, 37, 164–174CrossRefGoogle Scholar
  5. Brungs, W. A. (1973). Effects of residual chlorine on aquatic life. Journal - Water Pollution Control Federation, 45, 2180–2193Google Scholar
  6. Buschini, A., Martino, A., Gustavino, B., Monfrinotti, M., Poli, P., Rossi, C., Santoro, M., & Rizzoni, M. (2001, September). Genotoxicity detected with comet assay and micronucleus test in Cyprinus carpio specimens exposed in situ to Trasimeno Lake waters treated with disinfectants for potabilisation. (Paper presented at the 30th Annual Meeting of the European Environmental Mutagen Society, Gant)Google Scholar
  7. Campaioli, S., Ghetti, P. F., Minelli, A., & Ruffo, S. (1994). Manuale per il riconoscimento dei macroinvertebrati delle acque dolci italiane, Vol. 1. (Provincia Autonoma di Trento: Museo di Storia Naturale di Trento)Google Scholar
  8. Chen, C. M., Shih, M. L., Lee, S. Z., & Wang, J. S. (2001). Increased toxicity of textile effluents by a chlorination process using sodium hypochlorite. Water Science & Technology, 43(2), 1–8Google Scholar
  9. Emmanuel, E., Keckc, G., Blanchardb, J. M., Vermandeb, P., & Perrodina Y. (2004). Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environment international, 30, 891–900CrossRefGoogle Scholar
  10. EPS 1/RM/11 Environment Canada. (1990). Biological Test Method: Acute lethality Test Using Daphnia spp. Reference Method Report EPS 1/RM/11, July 1990. (Ottawa: Environment Canada)Google Scholar
  11. Ferraris, M., Chiesara, E., Radice, S., Giovara, A., Frigerio, S., Fumagalli, R., & Marabini, L. (2005). Study of potential toxic effects on rainbow trout hepatocytes of surface water treated with chlorine or alternative disinfectants. Chemosphere, 60, 65–73CrossRefGoogle Scholar
  12. Finney, D. J. (1947). Probit Analysis, a statistical treatment of the sigmoid response curve. (Cambridge: University of Cambridge, England)Google Scholar
  13. Fisher, D. J., & Burton, D. T. (1993). The acute effects of continuous and intermittent application of chlorine dioxide and chlorite on Daphnia magna, Pimepales promelas, and Oncorhynchus mykiss. WREC-93-B4, University of Maryland, Wye Research and Education Center, Queenstown, MD.Google Scholar
  14. Fisher, D. J., Burton, D. T., Yonkos, L. T., Turley, S. D., Turley, B. S., Ziegler, G. P., & Zillioux, E. J. (1994). Acute and short-term chronic effects of continuous and intermittent chlorination on Mysidiopsis bahia and Menidia beryllina. Environmental Toxicology & Chemistry, 13, 1525–1534Google Scholar
  15. Ghetti, P. F. (1986). I macroinvertebrati nell’analisi di qualita dei corsi d’acqua. Manuale di applicazione. Indice Biotico: E.B.I. modificato. (Trento: Provincia Autonoma di Trento)Google Scholar
  16. Guhl, W. (1987). Aquatic ecosystem characterisation by biotic indices. International Revue der Gesamten Hydrobiologie, 72, 431–455.Google Scholar
  17. Hall, L. W., Helz, G. R., & Burton, D. T. (1981). Power Plant Chlorination: A Biological and Chemical Assessment. (USA: Ann Arbor, MI)Google Scholar
  18. IRSA.(1993). Saggi di tossicità con Daphnia magna. Quaderno 1.1–9.11Google Scholar
  19. IRSA-CNR. (1994). Metodi analitici per le acque. Poligrafico dello Stato. Quaderno, 100, 336–342.Google Scholar
  20. Isidori, M., Lavorgna, M., Nardelli, A., & Parrella, A. (2004). Integrated environmental assessment of Volturno River in South Italy, Science of the Total Environment, 327, 123–134CrossRefGoogle Scholar
  21. Lydy, M. J., Crawford, C. G., & Frey, J. W. (2000). A comparison of selected diversity, similarity and biotic indices for detecting changes. Archives of Environment Contamination and Toxicology, 39, 469–479CrossRefGoogle Scholar
  22. Mancini, L., & Arcà, G. (2000). Carta della qualità biologica dei corsi d’acqua della Regione Lazio. (Roma: ISS – Regione Lazio, Il Centro Cromografico)Google Scholar
  23. Mattei, D. (2002). Valutazione ecotossicologica dei disinfettanti per le acque: determinazioni sul campo (fiume Tevere) e indagini di laboratorio. Degree thesis, University of “Tor Vergata”, RomeGoogle Scholar
  24. Mattei, D., Mancini, L., Migliore, L., Tancioni, L., & Cataudella S. (2005). Effetti di un impianto di depurazione sul fiume Tevere: tossicità su Daphnia e qualità biologica delle acque. Biologia Ambientale 19(1), 123–130Google Scholar
  25. Monarca, S., Feretti, D., Collivignarelli, C., Guzzella, L., & Zerbini, I. (2000). The influence of different disinfectants on mutagenicity and toxicity of urban wastewater. Water Research, 34(17), 4261–4269CrossRefGoogle Scholar
  26. OECD. (1996). OECD Guidelines for Testing of Chemicals. Procedure 211 – Daphnia magna reproduction test. (Paris: France)Google Scholar
  27. Pinder, L. C. V., Ladle, M., Gledhill, T., Bass, J. A. B., & Matthews, A. M. (1987). Biological surveillance of water quality. A comparison of macroinvertebrate surveillance methods in relation to assessment of water quality in a chalk stream. Hydrobiology, 109(2), 207–226Google Scholar
  28. Prat, N., & Munné, A. (2000). Water use and quality and stream flow in a Mediterranean stream. Water Research, 34(15), 3876–3881CrossRefGoogle Scholar
  29. Rook, J. J. (1974). Formation of haloforms during chlorination of natural waters. Water Treatment and Examination, 23, 234–243Google Scholar
  30. Ruffo, S. (Ed.). (1977–85). Guide per il riconoscimento delle specie animali delle acque interne italiane. (Rome: Collana del Progetto Finalizzato “Promozione della Qualità dell’Ambiente”, CNR)Google Scholar
  31. Sanna, M., & Floccia, M. (1993). Il Tevere alle porte di Roma. Rapporto sullo stato di salute. (Vizzolo Predabissi (Mi): Ecoedizioni)Google Scholar
  32. Sansoni, G. (1988). Atlante per il riconoscimento dei macroinvertebrati dei corsi d’acqua italiani. (Provincia Autonoma di Trento: Centro Italiano Studi di Biologia Ambientale)Google Scholar
  33. Sorace, A., Formichetti, P., Boano, A., Andreani, P., Gramegna, C., & Mancini, L. (2002). The presence of a river bird, the dipper, in relation to water quality and biotic indices in central Italy. Environmental Pollution, 118, 89–96CrossRefGoogle Scholar
  34. Vandenberghe, V., Goethals, P. L. M., Van Griensven, A., Meirlaen, J., De Pauw, N., Vanrolleghem, P., & Bauwen, W. (2005). Application of automated measurement stations for continuous water quality monitoring of the Dender River in Flanders, Belgium. Environmental monitoring and assessment, 108, 85–98CrossRefGoogle Scholar
  35. Veschetti, E., Cutilli, D., Bonadonna, L., Briancesco, R., Martini, C., Cecchini, G., Anastasi, P., & Ottaviani, M. (2003). Pilot-plant comparative study of peracetic acid and sodium hypochlorite wastewater disinfection. Water Research, 37, 78–94CrossRefGoogle Scholar
  36. Viganò, L., Arillo, A., Buffagni, A., Camusso, M., Ciannarella, R., Crosa, G., Falugi, C., Galassi, S., Guzzella, L., Lopez, A., Mingazzini, M., Pagnotta, R., Patrolecco, L., Tartari, G., & Valsecchi, S. (2003). Quality assessment of bed sediments of the Po River (Italy). Water Research, 37, 501–518.CrossRefGoogle Scholar
  37. Washington, H.G. (1984). Diversity, biotic and similarity indices. Water Research 18, 653–694.CrossRefGoogle Scholar
  38. White, G. C. (1986). Handbook of Chlorination, II Ed. (New York: Van Nostrand Reinhold)Google Scholar
  39. WHO. (2000). Disinfectants and disinfectant by-products. Environmental Health Criteria 216. (Geneva: WHO)Google Scholar
  40. Woodiwiss, F. S. (1981). Biological Water Assessment Methods, Nottingham-Abriged Report of Working Group Expert (ENV/416/80). Commission of the European CommunityGoogle Scholar
  41. Yonkos, L. T., Fisher, D. J., Burton, D. T., Whitekettle, W. K., & Petrille, J. K. (2001). Effectiveness of the Sulphur(IV) compound, sodium bisulphite, in reducing Chlorine, Chorine dioxide, and Chlorite toxicity to Daphnia magna in well and pond water. Environmental Toxicology and Chemistry, 20(3), 530–536CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Daniela Mattei
    • 1
  • Stefano Cataudella
    • 2
  • Laura Mancini
    • 1
  • Lorenzo Tancioni
    • 2
  • Luciana Migliore
    • 2
    Email author
  1. 1.Dipartimento Ambiente e Connessa Prevenzione PrimariaIstituto Superiore di SanitàRomaItaly
  2. 2.Dipartimento di BiologiaUniversità “Tor Vergata”RomaItaly

Personalised recommendations