Water, Air, and Soil Pollution

, Volume 177, Issue 1–4, pp 411–439 | Cite as

Simulation of Pollutant Dispersion in the Atmosphere by the Laplace Transform: The ADMM Approach

  • Davidson M. Moreira
  • Marco T. Vilhena
  • Tiziano Tirabassi
  • Camila Costa
  • Bardo Bodmann


Planetary Boundary Layer Atmospheric Environmental Convective Boundary Layer Eddy Diffusivity Quadrature Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abate, J. & Valkó, P.P. (2004). Multi-precision Laplace transform inversion. International Journal for Numerical Methods in Engineering, 60, 979–993.CrossRefGoogle Scholar
  2. Arya, S.P. (2003). A review of the theoretical bases of short-range atmospheric dispersion and air quality models. Proceedings of the Indian National Science Academy, 69A (6), 709–724.Google Scholar
  3. Berkovicz, R.R., Olesen H.R. & Torp U. (1986). The Danish Gaussian air pollution model (OML): description, test and sensitivity analysis in view of regulatory applications. Proceedings of the 15st International Technical Meeting on air pollution modelling and its applications V, St. Louis, US, (Plenum Press).Google Scholar
  4. Blackadar, A.K. (1997). Turbulence and Diffusion in the Atmosphere: Lectures in Environmental Sciences. Springer-Verlag.Google Scholar
  5. Boyce, W. & Di Prima, R. (2001). Elementary differential equations and boundary value problems. John Wiley & Sons.Google Scholar
  6. Bowne, N.E. & Londergan, R.J. (1989). Overview, result and conclusions for the EPRI plume model validation and development project: plane site. EPRI report EA-3074Google Scholar
  7. Briggs, G.A. (1975). Plume Rise Predictions, Lectures on Air Pollution and Environmental Impact Analyses, American Meteorological Society, D.A. Haugen (Ed.) Boston, MA, 59–111.Google Scholar
  8. Buligon, L. (2003). On the solution of the one-dimesional time-dependent advection-diffusion equation for simulation of contaminant dispersion in the Planetary Boundary Layer. Dissertation, Federal University of Rio Grande do Sul.Google Scholar
  9. Carvalho, J.C., Vilhena, M.T., & Moreira, D.M. (2005). Comparison between Eulerian and Lagrangian semi-analytical models to simulate the pollutant dispersion in the PBL. Applied Mathematical Modelling (in press).Google Scholar
  10. Costa, C.P. (2003). Influence of non-local effects in the pollutants dispersion in the Planetary Boundary Layer. Dissertation, Federal University of Rio Grande do Sul.Google Scholar
  11. Cotta, R.M. (1993). Integral Transforms in Computational Heat and Fluid Flow. CRC Press, Boca Raton, Florida.Google Scholar
  12. Cotta, R. & Mikhaylov, M. (1997). Heat Conduction Lumped Analysis, Integral Transforms, Symbolic Computation. John Wiley Sons, Baffins Lane, Chinchester, England.Google Scholar
  13. Deardoff, J.W. & Willis G.E. (1975). A parameterization of diffusion into the mixed layer. Journal of Applied Meteorology, 14, 1451–1458.CrossRefGoogle Scholar
  14. Degrazia, G.A., Campos Velho, H.F., & Carvalho, J.C. (1997). Nonlocal exchange coefficients for the convective boundary layer derived from spectral properties. Contr. Atmos. Phys., 57–64.Google Scholar
  15. Degrazia, G.A., Moreira, D.M., & Vilhena, M.T. (2001). Derivation of an eddy diffusivity depending on source distance for vertically inhomogeneous turbulence in a Convective Boundary Layer. Journal of Applied Meteorology, 40, 1233–1240.CrossRefGoogle Scholar
  16. Golay, M.W. (1982), Numerical modeling of buoyant plumes in a turbulent stratified atmosphere. Atmospheric Environmental, 16, 2373–2381.CrossRefGoogle Scholar
  17. Gryning, S.E., Holtslag, A.A.M., Irwin, J.S., & Siversteen, B. (1987). Applied dispersion modelling based on meteorological scaling parameters. Atmospheric Environmental, 21, 79–89.CrossRefGoogle Scholar
  18. Hanna, S.R., Briggs, G.A., & Jr. Hosker, R.P. (1982). Handbook on atmospheric diffusion. Prepared for the office of health and environmental research, office of energy research, U.S. Department of Energy, DOE/TIC 11223, J.S. Smith, Publication Editor.Google Scholar
  19. Hanna, S.R. (1989). Confidence limit for air quality models as estimated by bootstrap and jacknife resampling methods. Atmospheric Environmental, 23, 1385–1395.CrossRefGoogle Scholar
  20. Hanna, S.R. & Paine, R.J. (1989). Hybrid plume dispersion model (HPDM) development and evaluation. Journal of Applied Meteorology, 28, 206–224.CrossRefGoogle Scholar
  21. Kythe, P.K., Puri, P., & Schäferkotter, M.R. (1997). Partial Differential Equations and Mathematics. CRC Press.Google Scholar
  22. Moreira, D.M., Degrazia, G.A. & Vilhena, M.T. (1999). Dispersion from low sources in a Convective Boundary Layer: an analytical model. Il Nuovo Cimento, 22C (5) 685–691.Google Scholar
  23. Moreira, D.M, Ferreira Neto, P.V., & Carvalho, J.C. (2004). Analytical solution of the Eulerian dispersion equation for nonstationary conditions: development and evaluation. Environmental Modelling and Software, 20 (9), 1159–1165.Google Scholar
  24. Moreira, D.M., Rizza, U., Vilhena, M.T., & Goulart, A.G. (2005a). Semi-analytical model for pollution dispersion in the planetary boundary layer. Atmospheric Environmental, 39 (14), 2689–2697.Google Scholar
  25. Moreira, D.M., Tirabassi, T., & Carvalho, J.C. (2005b). Plume dispersion simulation in low wind conditions in stable and convective boundary layers. Atmospheric Environmental, 39 (20), 3643–3650.CrossRefGoogle Scholar
  26. Moreira, D.M, Carvalho, J.C., Goulart, A.G., & Tirabassi, T. (2005c). Simulation of the dispersion of pollutants using two approaches for the case of a low source in theSBL: evaluation of turbulence parameterisations. Water, Air and Soil Pollution, 161, 285–297.CrossRefGoogle Scholar
  27. Moreira, D.M., Vilhena, M.T., Tirabassi, T., Buske, D., & Cotta, R. (2005d). Near source atmospheric pollutant dispersion using the new GILTT method. Atmospheric Environmental, 39 (34), 6290–6295.Google Scholar
  28. Moura, A.B.D. (1995). Analytical Solution of Turbulent Vertical Dispersion in the Stable Boundary Layer. Dissertation, Federal University of Rio Grande do Sul.Google Scholar
  29. Netterville, D.D.J. (1990). Plume rise, entrainment and dispersion in turbulent winds. Atmospheric Environmental, 24, 1061–1081.Google Scholar
  30. Olesen, H.R. (1995). Datasets and protocol for model validation. Int. J. Environ. Pol., 5, 693–701.Google Scholar
  31. Pires, C.S. (1996). An Analytical Simulation of Contaminant Dispersion Released by an area Source in the Convective Boundary Layer. Dissertation, Federal University of Rio Grande do Sul.Google Scholar
  32. Stern, A.C. (1976). Air pollution, Vol. I. 3rd Edition. Academic Press, New York, USA.Google Scholar
  33. Stroud, A.H. & Secrest, D. (1966). Gaussian quadrature formulas. Englewood Cliffs, N.J., Prentice Hall Inc.Google Scholar
  34. Tirabassi, T. (2003). Operational advanced air pollution modeling. PAGEOPH, 160 (1-2), 5–16.CrossRefGoogle Scholar
  35. van Dop, H. & Verver, G. (2001). Countergradient transport revisited. Journal of Atmospheric Sciences, 58, 2240–2247.CrossRefGoogle Scholar
  36. Vilhena, M.T., Rizza, U., Degrazia, G.A., Mangia, C., Moreira, D.M., & Tirabassi, T. (1998). An analytical air pollution model: development and evaluation. Contr. Atmos. Phys., 71 (3), 315–320.Google Scholar
  37. Weil, J.C. (1988). Plume rise. Lectures on air pollution modeling. Venkatram A., & Wyngaard J.C., (Eds). American Meteorological Society, Boston, 119–166.Google Scholar
  38. Weil, J.C. (1979). Assessment of plume rise and dispersion models using lidar data, PPSP-MP-24, Prepared by environmental center, Martin Marietta Corporation, for Maryland department of natural resources.Google Scholar
  39. Zanetti, P. (1990). Air pollution modeling. Comp. Mech. Publications, Southampton (UK).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Davidson M. Moreira
    • 1
  • Marco T. Vilhena
    • 1
  • Tiziano Tirabassi
    • 2
    • 3
  • Camila Costa
    • 1
  • Bardo Bodmann
    • 1
  1. 1.Universidade Federal do Rio Grande do SulUFRGS/PROMECPorto AlegreBrazil
  2. 2.Institute ISAC of CNRBolognaItaly
  3. 3.PPGMAP/UFRGSPorto AlegreBrazil

Personalised recommendations