Advertisement

Water, Air, and Soil Pollution

, Volume 179, Issue 1–4, pp 43–55 | Cite as

Measuring air particulate matter in large urban areas for health effect assessment

  • S. M. Almeida
  • M. M. Farinha
  • M. G. Ventura
  • C. A. Pio
  • M. C. Freitas
  • M. A. Reis
  • M. A. Trancoso
Original Article

Abstract

This study deals with Particle Matter (PM) levels in the metropolitan area of Lisbon and shows that EU directive is exceeded in a systematic way, mainly due to the inner city traffic. Results show that it is important to develop an epidemiological study in Lisbon to find a possible association between PM levels, sources and morbidity. Some important issues related with a monitor's representation of regional, sub-regional, and local air pollution exposures to the population in the metropolitan area are highlighted. PM2.5 and PM10 total mass concentration measured in several places located in both centre of Lisbon and the outskirts are quite well correlated, mainly considering that two measuring methodologies (automatic and gravimetric) were used and areas with different classifications (urban and suburban) were analysed. However, the results imply that a source-oriented evaluation of PM health effects needs to take into account the uncertainty associated with spatial representativity of the species measured at a single sampling station. Temporal correlation across sampling stations, within relatively short separation distances, varied considerably for some important elements (Zn, Sb, Cu, As and Br), indicating that the precision of population exposure estimates for specific elements can vary depending on the species.

Keywords

Aerosols Morbidity Sources Sampling Spatial representative 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, S. M. (2004). Composition and sources of atmospheric aerosol in an urban/industrial region, Ph.D. thesis. Portugal: Departamento de Ambiente e Ordenamento, University of Aveiro (in portuguese).Google Scholar
  2. Almeida, S. M., Reis, M. A., Freitas, M. C., & Pio, C. A. (2003a). Quality Assurance in Elemental Analysis of Airborne Particles. Nuclear Instruments and Methods in Physics Research B, 207, 434–46.CrossRefGoogle Scholar
  3. Almeida, S. M., Freitas, M. C., Reis, M. A., & Pio, C. A. (2003b). Quality Assessment on Airborne Particulate Matter of K0INAA. Journal of Radioanalytical and Nuclear Chemistry, 257, 609–613.CrossRefGoogle Scholar
  4. Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., & Trancoso, M. A. (2005). Source apportionment of fine and coarse particulate matter in a sub-urban area at the western european coast. Atmospheric Environment, 39(17), 3127–3138.CrossRefGoogle Scholar
  5. Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., & Trancoso M. A. (2006) Source apportionment of atmospheric urban aerosol based on weekdays/weekend variability: Evaluation of Road Re-suspended Dust contribution, Atmospheric Environment 40(11) 2058–2067.Google Scholar
  6. Bowen, H. J. M., & Gibbons, D. (1963). Radioactivation Analysis, Clarendon, Oxford.Google Scholar
  7. Burnett, R. T., Dales, R., Krewski, D., Vincent, R., Dann, T., & Brook, J. F. (1995). Association between ambient particulate sulfate and admissions to Ontario hospitals for cardiac and respiratory diseases. American Journal of Epid., 142, 15–22.Google Scholar
  8. Chow, J. C., & Watson, J. G. (1999). Ion Chromatography in elemental analysis of airborne particles. In Landsberger, S., & Creatchman, M. (eds), Elemental Analysis of Airborne Particles. Advances in Environmental, Industrial and Process Control Technologies (Vol. 1, pp. 97–137). USA: Gordon and Breach Sciences Publishers.Google Scholar
  9. Grohse, P. M. (1999). Trace element analysis of airborne particles by atomic absorption spectroscopy, inductively coupled plasma-atomic emission spectroscopy, and inductively coupled plasma-mass spectroscopy. In: Landsberger, S., & Creatchman, M. (eds), Elemental Analysis of Airborne Particles. Advances in Environmental, Industrial and Process Control Technologies (Vol. 1, pp. 1–65). USA: Gordon and Breach Sciences Publishers.Google Scholar
  10. De Corte, F. (1987). The K0-Standardization Method - A Move to the Optimization of Neutron Activation Analysis, Agregé thesis. Belgium: Gent University.Google Scholar
  11. Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G., & Speizer, F. E. (1993). An association between air pollution and mortality in six US cities. New England Journal of Medicine, 329(24), 1753–1759.CrossRefGoogle Scholar
  12. Draxler, R. R. (1994). Hybrid Single-Particle Lagrangian Integrated Trajectories, Version 3.2, NOAA-ARL.Google Scholar
  13. Freitas, M. C., Farinha, M. M., Ventura, M. G., Almeida, S. M., Reis, M. A., & Pacheco, A. M. G. (2005). Atmospheric selenium in an industrialised area of Portugal. Journal of Radioanalytical and Nuclear Chemistry, 263(1–3), 711–719.Google Scholar
  14. IA (2005). A qualidade do ar em Portugal—Base de dados on-line sobre qualidade do ar', http://www.qualar.org/.
  15. Ito, K., Xue, N., & Thurston, G. (2004). Spatial variation of 2.5 chemical speices and source-apportioned mass concentrations in New York City. Atmospheric Environment, 38, 5269–5282.CrossRefGoogle Scholar
  16. Johansson, S. A. E., & Campbell, J. L. (1988). PIXE – A novel technique for elemental analysis. NY: Wiley.Google Scholar
  17. Maenhaut, W. (1992). The Gent stacked filter unit (SFU) sampler for the collection of atmospheric aerosols in two size fractions: description and instructions for installation and use, IAEA CRP E4.10.08, Belgium.Google Scholar
  18. Pio, C. A., Castro, L. M., & Ramos, M. O. (1993). Differentiated determination of organic and elemental carbon in atmospheric aerosol particles by a Thermal-optical method. In: Angeletti G., & Restelli G. (eds.), Proceedings of the Sixth European Symposium on Physical-Chemical Behaviour of Atmospheric Pollutants, Report EUR 15609/2 EN, pp. 706–711.Google Scholar
  19. Pio, C. A., Castro, L. M., Cerqueira, M. A., Santos, I. M., Belchior, F., & Salgueiro, M. L. (1996). Source assessment of particulate air pollutants measured at the southwest European coast. Atmospheric Environment, 30(19), 3309–3320.CrossRefGoogle Scholar
  20. Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal American Medical Association, 287(9), 1132–1141.CrossRefGoogle Scholar
  21. Pope, C. A. (1991). Respiratory hospital admission associated with 10 pollution in Utah, Salt Lake, and Cache Valleys. Archives of Environment Health, 46, 90–97.CrossRefGoogle Scholar
  22. Roemer, W., Hoek, G., & Brunekreef, B. (1993). Effect of ambient winter air pollution on respiratory health of children with chronic respiratory symptoms. Am. Rev. Respir. Dis., 147, 118–124.Google Scholar
  23. Rodríguez, S., Querol, X., Alastuey, A., Kallos, G., & Kakaliagou, O. (2001). Saharan dust contributions to PM10 and TSP levels in Southern and Easter Spain. Atmospheric Environment, 35, 2433–2447.CrossRefGoogle Scholar
  24. Schwartz, J., & Morris, R. (1995). Air Pollution and hospital admission for cardiovascular disease in Detroit, Michigan. Americican Journal of Epid., 142, 22–35.Google Scholar
  25. Schwartz, J., Dockery, D. W., & Neas, L. M. (1996). Is daily mortality associated specifically with fine particles? Journal of Air & Waste Management Association, 46, 927–939.Google Scholar
  26. Tanner, R. L., Marlow, W. H., & Newman, L. (1979). Chemical composition of size-fractionated sulfate in New York aerosol. Environment Science Technology, 13, 75–78.CrossRefGoogle Scholar
  27. Van, Dingenen R., Raes, F., Putaud, J.-P., Baltensperger, U., Charron, A., Facchini, M. C., Decesaric, S., Fuzzi, S., Gehrig, R., Hansson, H-C., Harrison, R. M., Hüglin, C., Jones, A. M., Laj, P., Lorbeer, G., Maenhaut, W., Palmgren, F., Querol, X., Rodriguez, S., Schneider, J., ten Brink, H., Tunved, P., Torseth, K., Wehner, B., Weingartner, E., Wiedensohler, A., & Wåhlin, P. (2004). A European aerosol phenomenology—1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 38, 2561–2577.CrossRefGoogle Scholar
  28. Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, 39, (8), 971.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • S. M. Almeida
    • 1
    • 2
  • M. M. Farinha
    • 1
  • M. G. Ventura
    • 1
  • C. A. Pio
    • 2
  • M. C. Freitas
    • 1
  • M. A. Reis
    • 1
  • M. A. Trancoso
    • 3
  1. 1.Instituto Tecnológico e NuclearSacavémPortugal
  2. 2.Departamento de Ambiente e OrdenamentoUniversidade, de AveiroAveiroPortugal
  3. 3.Instituto Nacional de EngenhariaTecnologia e Inovação, LAACQ, Estrada do Paço doLisboaPortugal

Personalised recommendations