Water, Air, and Soil Pollution

, Volume 174, Issue 1–4, pp 223–234 | Cite as

Determination of Organic Mercury in Biota, Plants and Contaminated Sediments Using a Thermal Atomic Absorption Spectrometry Technique

  • M. Válega
  • S. Abreu
  • P. Pato
  • L. Rocha
  • A. R. Gomes
  • M. E. Pereira
  • A. C. Duarte
Article

Abstract

A simple, rapid procedure for the determination of organic mercury in sediments, plants and fish tissues has been developed and validated. Extraction and separation of organic mercury compounds from the sample matrix was achieved by an established procedure based on an acid leaching of the sample (H2SO4/KBr/CuSO4), followed by extraction of the organic mercury halide with toluene and back-extraction with an aqueous solution of thiosulphate. Detection and quantification of mercury, in the liquid extracts, was made by atomic absorption spectrometry (AAS), following thermal decomposition of the sample. The method was evaluated using Certified Reference Material (CRM) BCR 463 (tuna fish), BCR 580 (estuarine sediment), IAEA-140TM (sea plant homogenate) and NRCC TORT-2 (lobster hepathopancreas). The recovery factors for organic mercury in all tested CRM were between 81–107%. The precision of the method has relative standard deviations of less than 10% for sediments and fish tissues and of less than 16% for plant material. The method was successfully applied to natural samples of sediments, plants, macroalgae and fish tissues collected from an estuarine ecosystem and could, therefore, be used for routine analyses.

Keywords

atomic absorption spectrometry with thermal decomposition (AAS) environmental matrixes organic mercury compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alloway, B. J.: 1995, ‘Trace metals in soils’, Blackie Academic & Professional, London.Google Scholar
  2. Abreu, S., Pereira, E., Vale, C. and Duarte, C.: 2000, ‘Accumulation of mercury in sea bass from a contaminated lagoon (Ria de Aveiro, Portugal)’, Mar Pollut Bull. 40(4), 293–297.CrossRefGoogle Scholar
  3. Bryce, D. W., Stockwell, P. B. and Corns, W. T.: 2004, ‘Mercury speciation: A fully automatic gas chromatographic/atomic fluorescence instrument’, RMZ- Materials and Geoenvironment: Mercury as a Global Pollutant 51(3), 1876–1879.Google Scholar
  4. Canário, J., Antunes, P., Lavrado, J. and Vale, C.: 2004, ‘Simple method for monomethylmercury determination in estuarine sediments’, Trend.Anal.Chem. 23(10–11), 799–806.CrossRefGoogle Scholar
  5. Coelho, J. P., Pereira, M. E., Duarte, A. and Pardal, M. A.: 2005, ‘Macroalgae response to a mercury contamination gradient in a temperate coastal lagoon (Ria de Aveiro, Portugal)’, Estuar Coast and Shelf S. 65(3), 492–500.CrossRefGoogle Scholar
  6. Colon, L. A. and Barry, E. F.: 1990, ‘Evaluation of an alternating current plasma emission detector for high-performance liquid chromatography’, J. Chromatogr. 513, 159–166.CrossRefGoogle Scholar
  7. Costley, C., Mossop, K., Dean, J., Garden, L., Marshall, J. and Carroll, J.: 2000, ‘Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation’, Anal. Chim. Acta 405, 179–183.CrossRefGoogle Scholar
  8. Dong, L.-M., Yan, X.-P., Li, Y., Jiang, Y., Wang, S.-W. and Jiang, D.-Q.: 2004, ‘On-line coupling of flow injection displacement sorption preconcentration to high performance liquid chromatography for speciation analysis of mercury in seafood’, J. Chromatogr. 1036, 119–125.CrossRefGoogle Scholar
  9. Falter, R., and Schöler, H. F.: 1994, ‘Interfacing high-performance liquid chromatography and cold-vapour atomic absorption spectrometry with on-line UV irradiation for the determination of organic mercury compounds’, J. Chromatogr. 675(1–2), 253–256.CrossRefGoogle Scholar
  10. Falter, R., Hintelmann, H. and Quevauviller, Ph.: 1999, ‘Conclusion of the workshop on “sources of error in methylmercury determination during sample preparation, derivatisation and detection”, Chemosphere 39(I), 1039–1049.Google Scholar
  11. Hall, G. and Pelchat, P.: 1997, ‘Evaluation of a direct solid sampling atomic absorption spectrometry for the trace determination of mercury in geological samples’, Analyst 122, 921–924.CrossRefGoogle Scholar
  12. Harrington, C. F., Romeril, J. and Catterick, T.: 1998, ‘The speciation of mercury and organomercury compounds by high performance liquid chromatography/atmospheric pressure ionization mass spectrometry’, Rapid Commun. Mass Spectrosc. 12, 911–916.CrossRefGoogle Scholar
  13. Heller, A. and Weber, J.: 1998. ‘Seasonal variation of mercury (II) and monomethylmercury in Spartina Alterniflora from the Great Bay estuary, NH’, Sci. Total Environ. 221, 181–188.CrossRefGoogle Scholar
  14. Hintelmann, H.: 1999, ‘Comparison of different extraction techniques used for methylmercury analysis with respect to accidental formation of methylmercury during sample preparation’, Chemosphere 39(7), 1093–1105.CrossRefGoogle Scholar
  15. Horvat, M.: 1996, ‘Mercury analysis and speciation in environment samples’, in W. Baeyens (ed.), Global and Regional Mercury Cycles, Fluxes and Mass Balances, Kluwer Academic Publishers, Netherlands, pp. 1–31.Google Scholar
  16. Landaluze, J., Diego, A., Raposo, J. and Madariaga, J.: 2004, ‘Methylmercury determination in sediments and fish tissues from the Nerbioi-Ibaizabal estuary (Basque Country, Spain)’, Anal. Chim. Acta 508, 107–117.CrossRefGoogle Scholar
  17. Mendelssohn, I., Kleiss, B. and Wakeley, J.: 1995, ‘Factors controlling the formation of oxidized root channels in wetland plants: A review and annotated bibliography’, Wetlands 15, 37–47.CrossRefGoogle Scholar
  18. Miller, J. N. and Miller, J. C.: 2000, Statistics and Chemometrics for Analytical Chemistry, Pearson Education Limited, Great Britain, 120 pp.Google Scholar
  19. Pereira, M. E., Duarte, A. C., Millward, G. E., Vale, C. and Abreu, S. N.: 1998, ‘Tidal export of particulate mercury from the most contaminated area of Aveiro's Lagoon, Portugal’, Sci. Total Environ. 213, 157–163.CrossRefGoogle Scholar
  20. Pereiro, I. R., Wasik, A. and Lobinski, R.: 1998, ‘Characterization of multicapillary gas chromatography–microwave-induced plasma atomic emission spectrometry for the expeditious analysis for organometallic compounds’, J. Chromatogr. 795(2), 359–370.CrossRefGoogle Scholar
  21. Quevaullier, Ph.: 1999, ‘Certification of methylmercury in sediment: From controversial facts to scientific evidence’, Chemosphere 39(7), 1153–1165.CrossRefGoogle Scholar
  22. Ramalhosa, E., Río Segade, S., Pereira, E., Vale, C. and Duarte, A.: 2001, ‘Simple methodology for methylmercury and inorganic mercury determinations by high–performance liquid chromatography-cold vapour atomic fluorescence spectrometry’, Anal. Chim. Acta 448, 135–143.CrossRefGoogle Scholar
  23. Rebelo, J. E.: 1994, ‘Ichthyofauna of Ria de Aveiro and the lagunar life cycle of sea bass (Dicentrarchus labrax, Linnaeus, 1758)’, Ph.D. Thesis, University of Aveiro, 180 pp.Google Scholar
  24. Salih, B., Say, R., Denizli, A., Genc, Ö. and Piskin, E.: 1998, ‘Determination of inorganic and organic mercury compounds by capillary gas chromatography coupled with atomic absorption spectrometry after preconcentration on dithizone-anchored poly(ethylene glycol dimethacrylate-hydroxyethylmethacrylate) microbeads’, Anal. Chim. Acta 371(2–3), 177–185.CrossRefGoogle Scholar
  25. Ullrich, S. M., Tanton, T. W. and Abdrashitova, S. A.: 2001, ‘Mercury in the aquatic environment: A review of factors affecting methylation’, Crit. Rev. Env. Sci. Tech. 31(4), 241–293.CrossRefGoogle Scholar
  26. Velado, N. G. O., Pereiro, R. and Medel, A. S.: 1998, ‘Glow discharge atomic emission spectrometry as a detector in gas chromatography for mercury speciation’, J. Anal. At. Spectrom. 13(9), 905–909.CrossRefGoogle Scholar
  27. Wan, C. C., Chen, C. S. and Jiang, S. J.: 1997, ‘Determination of mercury compounds in water samples by liquid chromatography–inductively coupled plasma mass spectrometry with an in situ nebulizer/vapor generator’, J. Anal. At. Spectrom. 7, 683–687.CrossRefGoogle Scholar
  28. Wasik, A., Pereiro, I. R., Dietz, C., Szpunar, J. and Lobinski, R.: 1998, ‘Speciation of mercury by ICP-MS after on line capillary cryofocussing and ambient temperature multicapillary gas chromatography’, Anal. Commun. 35, 331–335.CrossRefGoogle Scholar
  29. Wiener, J. G., Krabbenhoft, D. P., Heinza, G. H. and Scheuhammer, A. M.: 2002, ‘Ecotoxicology of Mercury’ in D. J. Hoffman et al. (ed.), Handbook of Ecotoxicology, CRC Press, Boca Raton-Florida, pp. 409–463.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Válega
    • 1
  • S. Abreu
    • 1
  • P. Pato
    • 1
  • L. Rocha
    • 1
  • A. R. Gomes
    • 1
  • M. E. Pereira
    • 1
  • A. C. Duarte
    • 1
  1. 1.Department of ChemistryUniversity of AveiroAveiroPortugal

Personalised recommendations