Advertisement

Water, Air, and Soil Pollution

, Volume 170, Issue 1–4, pp 3–15 | Cite as

Soil Biological Activities in Monitoring the Bioremediation of Diesel Oil-Contaminated Soil

  • R. Riffaldi
  • R. Levi-Minzi
  • R. Cardelli
  • S. Palumbo
  • A. Saviozzi
Article

Abstract

The effects of two different biological treatments on hydrocarbon degradation and on soil biological activities were determined during a 100-d incubation period. An evaluation of soil biological activities as a monitoring instrument for the decontamination process of diesel-oil contaminated soil was made using measurements of organic carbon content, soil microbial respiration, soil ATP and dehydrogenase, β-glucosidase, lipase enzyme activities. Five samples were used: S (control, uncontaminated soil), CS (contaminated soil), SCS (sterilized contaminated soil), CFS (contaminated soil plus N and P), CCS (contaminated soil plus compost). The relationships between soil parameters and the levels of total petroleum hydrocarbons (TPH) residues were investigated.

Results showed that inorganic nutrients NP and compost stimulated hydrocarbon biodegradation but not all biological activities to a significant extent. The residual hydrocarbon trend was positively related with that of the organic C content, microbial respiration and with β-glucosydase activity, while both soil lipase and dehydrogenase activities were negatively related with the hydrocarbon trend. Lipase activity was found to be the most useful parameter for testing hydrocarbon degradation in soil.

Keywords

bioremediation diesel oil hydrocarbons microbial respiration β-glucosydase lipase dehydrogenase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alef, K. and Nannipieri, P.: 1995, Methods in Applied Soil Microbiology and Biochemistry, Academic Press, London, 576 pp.Google Scholar
  2. Anderson, J. P. E.: 1982, ‘Soil respiration’, in A. L. Page, R. H. Miller and D. R. Keeney (eds.), Agronomy Monograph Number 9: Part 2. Chemical and Biological Properties. Second edition. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, USA, pp. 831–871.Google Scholar
  3. Casida, L. E. jr, Klein, D. A. and Santoro, T.: 1964, ‘Soil dehydrogenase activity’, Soil Sci. 98, 371–376.CrossRefGoogle Scholar
  4. Ceccanti, B., Garcia, C., Masciandaro, G., Macci, C., Carmignani, A. and Filareto, A.: 2003, ‘Il ruolo dei lombrichi (Eisenia foetida) nella bioremediation di un suolo contaminato da idrocarburi’, Convegno SISS Qualità del suolo, impatto antropico e qualità dei prodotti agricoli, Siena 9–12 giugno 2003.Google Scholar
  5. Ciardi, C. and Nannipieri, P.: 1990, ‘A comparison of methods for measuring ATP in soil’, Soil Biol. Biochem. 22, 725–727.CrossRefGoogle Scholar
  6. Contin, M., Franco, L. and De Nobili, M.: 2002, ‘Indicatori biochimici di resilienza nell'inquinamento del suolo da petrolio’, Convegno annuale S.I.S.S., 2002.Google Scholar
  7. DIN 38409-18: 1981, Bestimmung von Kohlenwasserstoffen. In Deutsche Einheitsverfahren zur Wasser-, Abwasser-, und Schlammuntersuchung, 9. Lieferung, VCH Verlagsgesellschaft, Weinheim.Google Scholar
  8. Eiland, F.: 1985, ‘Determination of adenosine triphosphate (ATP) and adenylate energy charge (AEC) in soil and use of adenine nucleotides as measures of soil microbial biomass and activity’, Danish J. Pl. Soil Sci. 1777, 1–193.Google Scholar
  9. Eivazi, F. and Tabatabai, M.A.: 1988, ‘Glucosidases and galactosidases in soils’, Soil Biol. Biochem. 20, 601–606.CrossRefGoogle Scholar
  10. Felsot, A. S.: 1998, ‘Landfarming pesticide-contaminated soil’, in Pesticide Remediation in Soil and Water, Hohn Wiley and Sons Ltd, Chichester, U.K., pp 129–160.Google Scholar
  11. Ghazali, F., Zaliha, R., Salleh, A. and Basri, M.: 2004, ‘Biodegradation of hydrocarbons in soil by microbial consortium’, International Biodeterioration & Biodegradation 54, 61–67.CrossRefGoogle Scholar
  12. Howard, P. J. A.: 1972, ‘Problems in the estimation of biological activity in soil’, Oikos. 23, 230–240.CrossRefGoogle Scholar
  13. Jaeger, K. E., Randac, S., Dijkstra, B. W., Colson, C., van Heuvel, M. and Missed, O.: 1994, ‘Bacterial Lipases’, FEMS Microbiological Letters. 15, 29–63.CrossRefGoogle Scholar
  14. Jackson, A. W., Pardue, J. H. and Araujo, R.: 1996, ‘Monitoring crude oil mineralization in salt marhes: use of stable carbon isotope ratios’, Environ. Sci. Techn. 30, 1139–1144.CrossRefGoogle Scholar
  15. Jorgensen, K. S., Puustinen, J. and Suortti, A. M.: 2000, ‘Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles’, Environ. Pollut. 107, 245–254.CrossRefGoogle Scholar
  16. Levi-Minzi, R., Riffaldi, R. and Saviozzi, A.: 1990, ‘Carbon mineralization in soil amended with different organic material’, Agric. Ecosys. Environ. 31, 325–335.CrossRefGoogle Scholar
  17. Margesin, R. and Schinner, F.: 1999, ‘Biological decontamination of oil spills in cold environments’, J. Chem. Technol. Biotechnol. 74, 1–9.CrossRefGoogle Scholar
  18. Margesin, R., Feller, G., Hammerle, M., Stegner, U. and Schinner, F.: 2002, ‘A colorimetric method for the determination of lipase activity in soil’, Biotechnology Letters 24, 27–33.CrossRefGoogle Scholar
  19. Margesin, R., Walder, G. and Schinner, F.: 2000a, ‘The impact of hydrocarbon remediation (diesel oil and polyciclic aromatic hydrocarbon) on enzyme activities and microbial properties of soil’, Acta Biotecnologica. 20, 313–333.CrossRefGoogle Scholar
  20. Margesin, R., Zimmerbauer, A. and Schinner, F.: 2000b, ‘Monitoring of bioremediation by soil biological activities’, Chemosphere. 40, 339–346.CrossRefGoogle Scholar
  21. Namkoong, W., Hwang, E.-Y., Park, J.-S. and Choi J.-K.: 2002, ‘Bioremediation of diesel contaminated soil with composting’, Environ. Pollut. 119, 23–31.CrossRefGoogle Scholar
  22. Platen, H.: 1995, ‘The determination of hydrocarbon content by infrared spectroscopy’, in K. Alef and P. Nannipieri (eds.), Methods in Applied Soil Microbiology and Biochemestry, Academic Press, Harcourt Brace & Company, San Diego, USA, pp. 506–528.Google Scholar
  23. Skujins, J.: 1976, ‘Enzymes in soil’, in A.D. Mclaren and G.H. Peterson (eds.), Soil Biochemistry, M. Dekker, New York, pp. 371–414.Google Scholar
  24. Snedecor, G. W. and Cochran, W. G.: 1978, Statistical Methods, The Iowa State University Press, Ames, Iowa, USA.Google Scholar
  25. Sorkhoh, N. A., Al-Hasan, R. H., Khanafer, M. and Radwan, S. S.: 1995, ‘Establishment of oil-degrading bacteria associated with cyanobacteria in oil-polluted soil’, J. Appl. Bact. 78, 194–199.Google Scholar
  26. Van Gestel, K., Mergaert, J., Swings, J. and Coosemans, J.: 2003, ‘Bioremediation of diesel oil-contaminated soil by composting with biowaste’, Environ. Pollut. 125, 361–368.CrossRefGoogle Scholar
  27. Walworth, J. L., Woolard, C. R. and Harris, K. C.: 2003, ‘Nutrient amendments for contaminated peri-glacial soils: use of cod bone meal as a controlled release nutrient source’, Cold Regions Science and Technology 37, 81– 88.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • R. Riffaldi
    • 1
  • R. Levi-Minzi
    • 1
  • R. Cardelli
    • 1
  • S. Palumbo
    • 1
  • A. Saviozzi
    • 1
  1. 1.Dipartimento di Chimica e Biotecnologie AgrarieUniversità di PisaPisaItaly

Personalised recommendations