Advertisement

Water, Air, and Soil Pollution

, Volume 170, Issue 1–4, pp 317–330 | Cite as

Zinc Toxicity Thresholds for Reclamation Forb Species

  • Mark W. PaschkeEmail author
  • Laura G. Perry
  • Edward F. Redente
Article

Abstract

Zinc toxicity thresholds for reclamation plants are largely unknown. As a result, ecological risk assessments often rely on toxicity thresholds for agronomic species, which may differ from those of restoration species. Our objective was to provide Zn toxicity thresholds for forb species that are commonly used in reclamation activities. We used a greenhouse screening study where seedlings of yarrow (Achillea millefolium L.), Bigelow's tansyaster (Machaeranthera bigelovii (Gray) Greene var. bigelovii), blue flax (Linum perenne L. var. Appar), alfalfa (Medicago sativa L. var. Ladak), Palmer's penstemon (Penstemon palmeri Gray), and Rocky Mountain penstemon (Penstemon strictus Benth. var. Bandera) were grown in sand culture and exposed to increasing concentrations of Zn. Lethal concentrations (LC50 – substrate Zn concentration resulting in 50% mortality), effective concentrations (EC50 – substrate Zn concentration resulting in 50% biomass reduction), and phytotoxicity thresholds (PT50 – tissue Zn concentration resulting in 50% biomass reduction) were then determined. Phytotoxicity thresholds and effective concentrations for these reclamation species were relatively consistent between species. Our estimates of PT50-shoot for these species range from 1258 to 3214 mg Zn kg−1 . Measures of EC50-plant for these restoration forbs ranged from 82 to 214 mg Zn L−1 . These thresholds might be more useful for risk assessors working on reclamation sites than those based on non-reclamation species that are widely used.

Keywords

phytotoxicity zinc pollution restoration risk assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alloway, B. J.: 1990, ‘Soil processes and the behavior of metals’, in B.J. Alloway (ed.), Heavy Metals in Soils, John Wiley & Sons, Inc., New York, pp. 7–28.Google Scholar
  2. Alloway, B. J.: 1995, ‘The origin of heavy metals in soil’, in B.J. Alloway (ed.), Heavy Metals in Soils, Blackie Academic & Professional, London, UK, pp. 38–57.Google Scholar
  3. Boawn, L. C., and Rasmussen, P. E.: 1971, ‘Crop response to excessive zinc fertilization of alkaline soil’, Agron. J. 63, 874–876.CrossRefGoogle Scholar
  4. Bradley, R., Burt, A. J. and Read, D. J.: 1982, ‘The biology of mycorrhiza in the Ericaceae. Viii. The role of mycorrhizal infection in heavy metal resistance’, New Phytol. 91, 197–209.CrossRefGoogle Scholar
  5. Brown, M. T. and Wilkins, D. A.: 1985, ‘Zinc tolerance in mycorrhizal betula’, New Phytol. 99, 101–106.CrossRefGoogle Scholar
  6. Chaney, R. L.: 1993, ‘Zinc phytotoxicity’, in A.D. Robson (ed.), Zinc in Soils and Plants, Kluwer Academic Publishers, London, pp. 135–150.Google Scholar
  7. Chang, A. C., Granato, T. C. and Page, A. L.: 1992, ‘A methodology for establishing phytotoxicity criteria for chromium, copper, nickel, and zinc in agricultural land application of municipal sewage sludges’, J. Environ. Qual. 21, 521-536.Google Scholar
  8. Ebbs, S. and Kochian, L.: 1997, ‘Toxicity of zinc and copper to brassica species: Implications for phytoremediation’, J. Environ. Quality 26, 776–781.CrossRefGoogle Scholar
  9. Ehinger, L. H. and Parker, G. R.: 1979, Tolerance of andropogon scoparius to copper and zinc’, New Phytol. 83, 175–180.CrossRefGoogle Scholar
  10. Foy, C. D., Chaney, R. L., and White, M. C.: 1978, The physiology of metal toxicity in plants’, Ann. Rev. Plant Physiol. 29, 511–566.CrossRefGoogle Scholar
  11. Freedman, B. and Hutchinson, T. C.: 1981, ‘Sources of metal and elemental contamination of terrestrial environments’, in N.W. Lepp (ed.), Effect of Heavy Metal Pollution on Plants, Applied Science Publishers, London, pp. 35–94.Google Scholar
  12. Ghosh, R. and Banerjee, D. K.: 1997, ‘Complexation of trace metals with humic acids from soil, sediment and sewage.’ Chem. Speciation Bioavailability 9, 15–19.Google Scholar
  13. Gough, L. P., Shacklette, H. T. and Case, A.A.: 1979, Element Concentrations Toxic to Plants, Animals, and Man, Bulletin No. 1466, U.S. Dept. Interior Geological Survey, Washington, B.C. 80 pp.Google Scholar
  14. Hogan, G. D. and Rauser, W. E.: 1979, ‘Tolerance and toxicity of cobalt, copper, nickel and zinc in clones of agrostis gigantea’, New Phytol. 83, 665–670.CrossRefGoogle Scholar
  15. Howeler, R. H., Edwards, D. G. and Asher, C. J.: 1982, ‘Micronutrient deficiencies and toxicities of cassava plants grown in nutrient solutions. I. Critical tissue concentrations’, J. Plant Nutrition 5, 1059–1076.CrossRefGoogle Scholar
  16. Humphreys, M. O. and Nicholls, M. K.: 1984, ‘Relationships between tolerance to heavy metals in agrostis capillaris L. (A. Tenuis Sibth.)’, New Phytol. 98, 177–190.CrossRefGoogle Scholar
  17. Jones, M. D. and Hutchinson, T. C.: 1986, ‘The effect of mycorrhizal infection on the response of betula papyrifera to nickel and copper’, New Phytol. 102, 429–442.CrossRefGoogle Scholar
  18. Jordan, M. J.: 1975, ‘Effects of zinc smelter emissions and fire on a chestnut-oak woodland’, Ecol. 56, 78–91.CrossRefGoogle Scholar
  19. Kabata-Pendias, A. and Pendias, H.: 2001, Trace Elements in Soils and Plants. CRC Press, Boca Raton, Fla., USA, pp. 413.Google Scholar
  20. Langille, A. R. and Batteese, R. I., Jr.: 1974, ‘Influence of zinc concentration in nutrient solution on growth and elemental content of the katahdin potato plant’, Amer. Potato J. 51, 345–354.Google Scholar
  21. MacLean, A. J. and Dekker, A. J.: 1978, ‘Availability of zinc, copper and nickel to plants grown in sewage-treated soils’, Can. J. Soil Sci. 58, 381–389.CrossRefGoogle Scholar
  22. Macnicol, R. D. and Beckett, P. H. T.: 1985, ‘Critical tissue concentrations of potentially toxic elements’, Plant 502785, 107–129.Google Scholar
  23. Martino, E., Turnau, K., Girlanda, M., Bonfante, P. and Perotto, S., 2000, ‘Ericoid mycorrhizal fungi from heavy metal polluted soils: Their identification and growth in the presence of zinc ions’, Mycol. Res. 104, 338–344.CrossRefGoogle Scholar
  24. Miles, L. J. and Parker, G. R.: 1979, ‘The effect of soil-added cadmium on several plant species’, J. Env. Qual. 8, 229–232.Google Scholar
  25. Millikan, C. R.: 1963, ‘Effects of different levels of zinc and phosphorus on growth of subterranean clover (Trifolium subterraneum L.)’, Austral. J. Agr. Res. 14, 180.CrossRefGoogle Scholar
  26. Neter, J., Kutner, M. H., Nachtsheim, C. J. and Wasserman, W.: 1996, Applied Linear Statistical Models, Third Edition. Irwin, Chicago, IL.Google Scholar
  27. Paschke, M. W. and Redente, E. F.: 2002, ‘Copper toxicity thresholds for important restoration grass species of the western United States’, Env. Tox. Chem. 21, 2692–2697.CrossRefGoogle Scholar
  28. Paschke, M. W., Redente, E. F. and Levy, D. B.: 2000, ‘Zinc toxicity thresholds for important reclamation grass species of the western United States’, Env. Tox. Chem. 19, 2751–2756.CrossRefGoogle Scholar
  29. Pedersen, M. B., Kjaer, C. and Elmegaard, N.: 2000, ‘Toxicity and bioaccumulation of copper to black bindweed (Fallopia convolvulus) in relation to bioavailability and the age of soil contamination’, Arch. Env. Contam. Tox. 39, 431–439.CrossRefGoogle Scholar
  30. Pollard, A. J.: 1980, ‘Diversity of metal tolerances in Plantago lanceolata L. from the southeastern United States’, New Phytol. 86, 109–117.CrossRefGoogle Scholar
  31. Prodgers, R. A. and Inskeep, W. P.: 1991, ‘Heavy metal tolerance of inland saltgrass (Distichlis spicata)’, Great Basin Naturalist 51, 271–278.Google Scholar
  32. Reisenauer, H. M.: 1988, ‘Determination of plant – available soil manganese.’ in H.M. Graham, R.J. Hannam and N.C. Uren (eds.), Manganese in Soils and Plants, Kluwer, Dordrecht, pp. 87–98.Google Scholar
  33. Ross, S. M.: 1994, ‘Sources and forms of potentially toxic metals in soil-plant systems.’ in S.M. Ross (ed.), Toxic Metals in Soil-Plant Systems, John Wiley and Sons, Chichester, UK, pp. 3–25.Google Scholar
  34. Ross, S. M. and Kaye, K. J.: 1994, ‘The meaning of metal toxicity in soil-plant systems’, in S.M. Ross (ed.), Toxic Metals in Soil-Plant Systems, John Wiley and Sons, Chichester, UK, pp. 27–61.Google Scholar
  35. Stevenson, F. J. and Ardakani, M. S.: 1972, ‘Organic matter reactions involving micronutrients in soils’, in J. J. Mortveldt, P. M. Giordano and W. L. Lindsay (eds.), Micronutrients in Agriculture, Soil Sci. Soc. Am., Madison, WI, USA, pp. 79–114.Google Scholar
  36. Symeonidis, L., McNeilly, T. and Bradshaw, A. D.: 1985, ‘Differential tolerance of three cultivars of Agrostis capillaris L. to cadmium, copper, lead, nickel and zinc’, New Phytol. 101, 309–315.CrossRefGoogle Scholar
  37. Van Tichelen, K. K., Colpaert, J. V. and Vangronsveld, J.: 2001, ‘Ectomycorrhizal protection of pinus sylvestris against copper toxicity’, New Phytol. 150, 203–213.CrossRefGoogle Scholar
  38. Wu, L. and Kruckeberg, A. L.: 1985, ‘Copper tolerance in two legume species from a copper mine habitat’, New Phytol. 99, 565–570.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Mark W. Paschke
    • 1
    Email author
  • Laura G. Perry
    • 1
  • Edward F. Redente
    • 1
  1. 1.Department of Forest, Rangeland and Watershed StewardshipColorado State UniversityFort CollinsUSA

Personalised recommendations