Advertisement

Water, Air, and Soil Pollution

, Volume 172, Issue 1–4, pp 201–219 | Cite as

Fungal Bioremediation of Creosote-Contaminated Soil: A Laboratory Scale Bioremediation Study Using Indigenous Soil Fungi

  • Harrison Ifeanychukwu AtaganaEmail author
  • R. J. Haynes
  • F. M. Wallis
Article

Abstract

The aim of the study is to determine the efficacy of indigenous soil fungi in removing (PAHs) from creosote-contaminated soil with a view to developing a bioremediation strategy for creosote-contaminated soil. Five fungal isolates, Cladosporium, Fusarium, Penicillium, Aspergillus and Pleurotus, were separatelyinoculated onto sterile barley grains and incubated in the dark. Thecolonized barley was inoculated onto creosote-contaminated (250 000 mg kg−1) soil in 18 duplicate treatments and incubated at 25 °C forseventy days. The soil was amended with nutrient supplements to give a C:N:Pratio of 25:5:1 and tilled weekly. Creosote removal was higher (between 78and 94%) in nutrient supplemented treatments than in the un-supplementedones (between 65 and 88%). A mixed population of fungi was more effective(94.1% in the nutrient amended treatment) in creosote removal than singlepopulations wit a maximum of 88%. Barley supported better fungal growthand PAH removal. Pleurotus sp. removed the creosote more than the other isolates. Two andthree-ring PAHs were more susceptible to removal than the 4- and 5-ringPAHs, which continued to remain in small amounts to the end of thetreatment. Reduction of creosote in the present study was higher than wasobserved in an earlier experiment using a consortium of microorganisms, mainly bacteria, on the same contaminated soil (Atagana, 2003).

Keywords

bioremediation creosote fungi nutrients PAHs soil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M.: 1999, Biodegradation and Bioremediation, Academic Press, San Diego, pp. 10–75.Google Scholar
  2. Alexopoulos, C. J., Mims, C. W. and Blackwell, M.: 1996, Introduction to Mycology, John Wiley & Sons, New York, pp. 45–145.Google Scholar
  3. Andersson, B. E. and Henrysson, T.: 1996, ‘Accumulation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white rot fungi’, Appl. Microbiol. Biotechnol. 46, 647–652.CrossRefGoogle Scholar
  4. Atagana, H. I.: 2003, ‘Bioremediation of creosote-contaminated soil: A pilot-scale landfarming evaluation’, World J. Microbiol. Biotechnol. 19, 571–581.CrossRefGoogle Scholar
  5. Atlas R. M.: 1981, ‘Microbial degradation of petroleum hydrocarbons: an environmental perspective’, Microbiol. Rev. 45, 180–209.Google Scholar
  6. Baker, K. H. and Herson, D. S.: 1995, Bioremediation. McGraw-Hill, Toronto, pp. 56–152.Google Scholar
  7. Barnett, H. L. and Hunter, B. B.: 1998, Illustrated genera of imperfect fungi. APS Press, St. Paul, pp. 15–77.Google Scholar
  8. Bazelel, L., Hadar, Y. and Cerniglia C. E.: 1996, ‘Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus’, Appl. Environ. Microbiol. 62, 292–295.Google Scholar
  9. Bogan, B. W. and Lamar, R. T.: 1995, ‘One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium’, Appl. Environ. Microbiol. 61, 2631–2635.Google Scholar
  10. Boonchan, S., Britz, M. L. and Stanley, G. A.: 2000, ‘Degradation and mineralization of high-molecular weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures’, Appl. Environ. Microbiol. 60, 1007–1019.CrossRefGoogle Scholar
  11. Boyle, C. D.: 1995, ‘Development of a practical method for inducing white rot fungi to grow into and degrade organopollutants in soil’, Can. J. Microbiol. 41, 345–353.Google Scholar
  12. Casillas, R. P., Crow Jr, S. A., Heinze, T. M., Deck, J. and Cerniglia, C. E.: 1996, ‘Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi’, J Ind. Microbiol. 16, 205–215.CrossRefGoogle Scholar
  13. Cerniglia, C. E. and Gibson, D. T.: 1977, ‘Metabolism of Naphthalene by Cunninghamella Elegans’, Appl. Environ. Microbiol. 34, 363–370.Google Scholar
  14. Cerniglia, C. E.: 1997, ‘Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation’, J Ind. Microbiol. Biotechnol. 19, 324–333.CrossRefGoogle Scholar
  15. Clemente, A. R., Falconi, F. A., Anasawa, T. A. and Durrant, L. R.: 1999, ‘Degradation of aromatic pollutants by a non-basidiomycete ligninolytic fungus’, in A. Leeson and B.C. Alleman (eds.), Bioremediation Technologies for Polycyclic Aromatic Hydrocarbon Compounds, Battelle Press, Columbus.Google Scholar
  16. Coutts, D. A. P., Senior, E. and Balba, M. T. M.: 1987, Multistage hemostat investigation of interspecies interactions in a hexanoate-catabolizing microbial association isolated from anoxic landfill. J. Appl. Bact. 62, 251–260.Google Scholar
  17. Davis, J. S. and Westlake, D. W. S.: 1978, ‘Crude oil utilization by fungi’, Can. J. Microbiol. 25, 146–156.CrossRefGoogle Scholar
  18. Eggen, T., Araneda, E., Vethe, Ø. and Sveum, P.: 1999, ‘Degradation of aged creosote-contaminated soil by Pleurotus ostreatus’, in A. Leeson and B.C. Alleman (eds.) Bioremediation Technologies for Polycyclic Aromatic Hydrocarbon Compounds, Battelle Press, Columbus.Google Scholar
  19. Eriksson, M., Dalhammar, G. and Borg-Karlson, A. -K.: 2000, ‘Biological degradation of selected hydrocarbons in an old PAH/creosote contaminated soil from a gas work site’, Appl. Microbiol. Biotechnol. 53, 619–626.CrossRefGoogle Scholar
  20. Ferris, J. P., Fasco, M. J., Stylianopoulou, F. L., Jerina, D. M., Daly, J. W. and Jeffrey, A. M.: 1973, Monooxygenase activity in Cunninghamella bainieri: evidence for a fungal system similar to liver microsomes. Arch. Biochem. Bioph. 156, 97–103.CrossRefGoogle Scholar
  21. Field J. A., De Jong, E, Costa, G. F. and de Bont, J. A. J.: 1992.: ‘Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi’, Appl. Environ. Microbiol. 58, 2219–2226.Google Scholar
  22. Forster, J. C.: 1995, ‘Determination of the water-holding capacity of soils’, in Alef, K. and Nannipieri, P. (eds.) Methods in Applied Soil Microbiology and Biochemistry, Academic Press, London.Google Scholar
  23. Fritsche, W.: 1992, ‘Degradation of xenobiotics by fungi’, in Preprints of International Symposium on Soil Decontamination Using Biological Processes, Karlsruhe, Germany. 6–9 December 1992. pp 31–36. Frankfurt am Main: Dechema.Google Scholar
  24. Harmsen, J., van den Toorn, A., Heersche, J., Riedstra, D. and van der Kooij, A.: 1999, ‘Use of residual substrate from mushroom farms to stimulate biodegradation of poorly available PAH’, in Leeson, A. and Alleman, B.C (eds.) Bioremediation Technologies for Polycyclic Aromatic Hydrocarbon Compounds, Battelle Press Columbus.Google Scholar
  25. Hofrichter, M., Günther, T. and Fritsche, W.: 1993, ‘Metabolism of phenol, chloro- and nitrophenols by the Penicillium strain Bi 7/2 isolated from a contaminated soil’, Biodegradation 3, 415–421.CrossRefGoogle Scholar
  26. Kirk, P.W.: 1969, ‘Isolation and culture of lignicolous marine fungi’, Mycologia 16, 174–177.CrossRefGoogle Scholar
  27. Kotterman, K., van Lieshout, J., Grotenhuis, T. and Field, J.: 1999, ‘Development of white rot fungal technology for PAH degradation’ in Leeson, A. and Alleman, B.C (eds.), Bioremediation Technologies for Polycyclic Aromatic Hydrocarbon Compounds, Battelle Press, Columbus.Google Scholar
  28. Lamar, R. T., Larsen, M. J., Kirk, T. K. and Glaser, J. A.: 1987, ‘Growth of the white rot fungus Phanerochaete Chrysosporium in soil’, in Land Disposal, Remedial Action, Incineration and Treatment of Hazardous Waste: Proceedings of the 13th Annual Research Symposium. US EPA.Google Scholar
  29. Launen, L., Pinto, L., Wiebe, C., Kiehlmann, E. and Moore, M.: 1995, ‘The oxidation of pyrene and benzo(a)pyrene by nonbasidiomycete soil fungi’, Can. J. Microbiol. 41, 477–488.CrossRefGoogle Scholar
  30. Lees, Z. M.: 1996, ‘Bioremediation of oil-contaminated soil: A South African case study’, PhD thesis University of Natal, Pietermaritzburg, South Africa.Google Scholar
  31. Loske, D., Hütterman, A., Majcherczyk, A., Zadrazil, F., Lorsen, H. and Waldinger, P.: 1989, ‘Use of white rot fungi for the clean-up of contaminated sites’, in Coughlan, M.P. and Amaral Collaço, M.T. (eds.) Advances in Biological Treatments of Lignocellulosic materials, Elsevier, London.Google Scholar
  32. MacGillivray, A. R. and Shiaris, M. P.: 1993, ‘Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments’, Appl. Environ. Microbiol. 59, 1613–1618.Google Scholar
  33. Martens, R. and Zadrazil, F.: 1992, Screening of white rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil, in Preprints of International Symposium on Soil Decontamination Using Biological Processes, Karlsruhe, Germany. 6–9 December 1992. Dechema, Frankfurt am Main.Google Scholar
  34. McGugan, B. R.: 1997, ‘Exploitation of indigenous fungi in low-cost ex-situ attenuation of oil-contaminated soil’, M.Sc. Thesis, University of Natal, Pitermaritzburg, South Africa.Google Scholar
  35. Novotný, C., Erbanová, P., Šašek, V., Kubátová, A., Cajthaml, T., Lang, E., Krahl, J. and Zadrazil, F.: 1999, ‘Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi’, Biodegredation 10, 159–168.CrossRefGoogle Scholar
  36. Pothuluri, J. V., Freeman, J. P., Evans, F. E. and Cerniglia, C. E.: 1990, ‘Fungal transformation of fluoranthene’, Appl. Environ. Microbiol. 56, 2974–2983.Google Scholar
  37. Pothuluri, J. V., Freeman, J. P., Evans, F. E. and Cerniglia, C. E.: 1992, ‘Fungal metabolism of acenaphthene by Cunninghamella Elegan’, Appl. Environ. Microbiol. 58, 3654–3659.Google Scholar
  38. Pozdnyakova, N., Turkovskaya, O., Ignatov, V.: 2001, ‘Degradation of oil hydrocarbons by White-Rot fungi’ in Proceedings of the First International Congress on Petroleum Contaminated soils, Sediments and Water, London. 14–17 August, 2001.Google Scholar
  39. Raper, K. B. and Thom, C.: 1968, A manual of the Penicillia, Hafner Publishing Company, New York.Google Scholar
  40. Raymond, R. L., Hudson, J. O. and Jamieson, V. W.: 1976, ‘Oil degradation in soil’, Appl. Environ. Microbiol. 31, 522–535.Google Scholar
  41. Rodriguez, R., Montalvo, C. P., Dendooven, L., Esparza, F. G. and Fernandez, L. L.: 1999, ‘Degradation of benzo(a)pyrene by white rot fungi’ in Leeson, A. and Alleman, B.C. (eds.), Bioremediation Technologies for Polycyclic Aromatic Hydrocarbon Compounds Battelle Press, Columbus.Google Scholar
  42. Sack, U. and Fritsche, W.: 1997, ‘Enhancement of pyrene mineralization in soil by wood-decaying fungi’, FEMS Microb. Ecol. 22, 77–83.CrossRefGoogle Scholar
  43. Sack, U., Heinze, T. M., Deck, J., Cerniglia, C. E., Martens, R., Zadrazil, F. and Fritsche, W.: 1997, ‘Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi’, Appl. Environ. Microbiol. 63, 3919–3925.Google Scholar
  44. Šašek, V., Volfová, O., Erbanová, P., Vyas, B. R. M. and Matucha, M.: 1993, ‘Degradation of PCBs by white rot fungi, methylotrophic and hydrocarbon utilizing yeasts and bacteria’, Biotechnol. Lett. 15, 521–526.CrossRefGoogle Scholar
  45. USEPA: 1986, Test Methods for Evaluating Soil Waste SW-846, Vol. I and II Nov. 1986Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Harrison Ifeanychukwu Atagana
    • 1
    Email author
  • R. J. Haynes
    • 2
  • F. M. Wallis
    • 2
  1. 1.School of Earth SciencesMangosuthu TechnikonJacobsSouth Africa
  2. 2.School of Applied Environmental SciencesUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations