Water, Air, and Soil Pollution

, Volume 173, Issue 1–4, pp 81–101 | Cite as

Natural and Anthropogenic Origin Sulphate in an Mountainous Groundwater System: S and O Isotope Evidences

  • Piotr Jezierski
  • Anna SzynkiewiczEmail author
  • Mariusz-Orion Jsunędrysek


Concentration of sulphate, δ34S(SO4 2−), δ18O(SO4 2−) and δ18O(H2O) values, in surface waters and groundwaters from crystalline rocks in mountainous Rudawy Janowickie Massif (RJ) in SW Poland, have been analysed. The RJ is located close to the area of the biggest anthropogenic emission source of sulphur compounds in Europe called the “Black Triangle”. The lowest concentration of sulphate ions dissolved in water (13 mg/l) were found in groundwaters at the highest altitude (750m asl). In the course of groundwater downward infiltration (hydraulic gradient) the concentration of sulphate ions increased with decreasing altitude. The highest concentrations of SO4 2− (100 mg/l in springs at metamorphic rocks and 60 mg/l in springs at granites) were observed at the foothills (altitudes 410 and 580 m asl, respectively). Likewise, the sulphur and oxygen isotope composition of sulphate ions showed systematic increasing trends with respect to the altitude decrease (from 3.45 to 11.05‰ and from −6.53 to 10.03‰, respectively).

Three main sources of sulphate for the surface-water/groundwater systems in RJ have been isotopically discriminated. The high δ34S-δ18O sulphate showed waters from precipitation and peat bogs. The lower δ34S–δ18O sulphate originated due to decomposition of organic matter. The lowest δ34S–δ18O sulphates formed due to microbial (Thiobacillus ferrooxidans) pyrite oxidation within the pyrite-deposit weathering zone. The highest contribution of anthropogenic sulphate have been observed at the top-hills and during low water levels at lower altitudes. The contribution of biogenic and geogenic sulphate relatively increased with the increasing distance (time?) of the water flow through rocks or/and increasing water level in springs.

The isotope, hydrochemical and hydrogeological observations confirmed a negligible role of anthropogenic sulphur in the groundwaters analysed. This suggests significant improvement in the natural environment in the Western parts of Sudety Mountains.


sulphate water sulphur oxygen stable isotopes contamination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baron, H. and Sobik, M.: 1995, “Role of atmospheric deposition in acidification of the environment of Karkonosze Mountains' (in Polish)”, Meteorol. Klimatol., Seria. C. 1705, 59–73.Google Scholar
  2. Ciezkowski W., Kryza H. and Kryza, J.: 1986, “Chemical variations in groundwaters systems contaminated by atmospheric precipitations – evidence for ultrafresh waters from crystalline rocks in Sudety Mts (in Polish)”, in Prace Naukowe Instytutu Geotechniki Politechniki Wrocsl awskiej (ed), Hydrogeological Problems in SW Poland, Seria “konferencje'' nr 21, Wroclaw, pp. 193–198.Google Scholar
  3. Chiba, H. and Sakai, H.: 1985, “Oxygen isotope exchange rate between dissloved sulphate and water at hydrothermal temperature”, Geochimica and Cosmochimica Acta 49, 993–1000.CrossRefGoogle Scholar
  4. Dobrzyski, 1997: ‘Endangerment of the quality of water intaking at mountain head-streams in the Sudety Mts (SW Poland), (in Polish)”, in J. Górski and E. Liszkowska (eds), Current Problems in Hydrogeology, WIND J. Wojewoda, Wroclaw, Vol. 8, pp. 335–339.Google Scholar
  5. Fritz, P., Basharmal, G.M., Drimmie, R.J., Ibsen, J. and Qureshi, R.M.: 1989, “Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate”, Chemical Geology (Isotope Geoscience Section) 79, 99–105.CrossRefGoogle Scholar
  6. Garrels, R. M. and Thompson, M. E.: 1960, “Oxidation of pyrite in ferric sulphate sollution”, Amer. J. Sci. 258, 57–67.CrossRefGoogle Scholar
  7. Hoeffs, J.: 1997, Stable Isotope Geochemistry, 3rd Edition. Springer, Berlin, 199 pp.Google Scholar
  8. Horibe, Y., Shigehara, K. and Takakuwa, Y.: 1973, “Isotope separation factor of carbon-dioxide-water system and isotopic composition of atmospheric oxygen”, J. Gephys. Res. 78, 2625–2629.CrossRefGoogle Scholar
  9. Jaskólski, S.: 1964, “An attempts to evaluate the origin of the pyrite-bearing deposit in Wiesciszowice (Lower Silesia), (in Polish)”, Prace Polskiego Towarzystwa Geologicznego 34, 19–63.Google Scholar
  10. Jkern1ptsunkern-4pt edrysek, M. O.: 2000, “Oxygen and sulphur isotope dynamics in the SO$_42- of an urban precipitation”, Water, Air and Soil Pollution 117, 15–25.CrossRefGoogle Scholar
  11. Jkern1ptsunkern-4pt edrysek, M.O., Kalużny, A. and Hoeffs, J.: 2002, “Sulphur and oxygen isotope ratio in spruce needles as a tracer of atmospheric pollution”, Journal of Geophysical Research 107, no D.18, 4353.CrossRefGoogle Scholar
  12. Jezierski, P.: 2002, “Relationship between chemical composition and dynamics of groundwater in the Rudawy Janowickie Mountains (in Polish)”, Ph.D. thesis, University of Wrocsl aw, 114 pp.Google Scholar
  13. Jezierski, P. and Szynkiewicz, A.: 2002, “The origin of sulphate ions in goundwaters from the Rudawy Janowickie Mountains: Hydrochemical and isotopic studies (in Polish)”, Interdisciplinary Problems in Mining and Geology. Scientific Papers of the Institute of Mining of the Wroclaw Technical University, 103, 301–308.Google Scholar
  14. Kaplan, I.R. and Rittenberg, S.C.: 1964, “Microbiological fractionation of sulfur isotopes”, J. Gen. Microbiol. 34, 195–212.PubMedGoogle Scholar
  15. Kroopnick, P. and Craig, H.: 1972, “Atmospheric oxygen: isotopic composition and solubility fractionation”, Science 175, 54–55.CrossRefGoogle Scholar
  16. Krouse, H.R. and Grinenko, V.A.: 1991, “Hydrosphere”, in H.R. Krouse and V.A. Grinenko (eds), Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment John Wiley & Sons, pp. 177–265.Google Scholar
  17. Krouse, H.R., Cook F.D., Sasaki A. and Smejkal V.: 1970, “Microbial isotope fractionation in springs in western Canada”, in K. Ogata and T. Hayakawa (eds), Proceedings of Recent Developments in Mass Spectroscopy, Kyoto, Japan, pp. 629–639.Google Scholar
  18. Kryza, H., Kryza, J. and Marszalek, H.: 1994, “Contamination of waters from Karkonosze Mts (in Polish)”, in Zofia Fiszer (ed.), Proceedings of Karkonoskie Badania Ekologiczne 2nd Meeting, Dziekanów Lesny 17-19.01.1994, Oficyna Wydawnicza Instytutu Ekologii PAN, pp. 97–123.Google Scholar
  19. Kryza, H., Kryza, J. and Marszalek, H.: 1995, “Hydrochemistry of the aquatic environment in Karkonosze Mts. (in Polish)”, in Zofia Fiszer (ed.), Proceedings of Karkonoskie Badania Ekologiczne 3th Meeting, Dziekanów Lesny, Oficyna Wydawnicza, Instytut Ekologii PAN, pp. 35–50.Google Scholar
  20. Lacey, E.T. and Lawson, F.: 1970, “Kinetics of the liquid-phase oxidation of acid ferrous sulphate by the bacterium Thiobacillus ferrooxidans”, Biotech. Bioeng. 12, 29–50.CrossRefGoogle Scholar
  21. Lis, J.: 1970, “Geochemistry of selected elements in Karkonosze granite massif”, Biuletyn Inst. Geol. 4, 5–101.Google Scholar
  22. Lloyd, R.M.: 1968, “Oxygen isotope behaviour in the sulphate-water system”, J. Geophys. Res. 73, 6099–6110.CrossRefGoogle Scholar
  23. Longinelli, A. and Cortecci, G.: 1970, “Isotopic abundance of oxygen and suphur in sulphate ions from river water”, Earth and Planet. Sci. Lett. 7, 376–380.CrossRefGoogle Scholar
  24. Macioszczyk: 1987, Hydrogeochemistry (in Polish), Wydawnictwa Geologiczne, Warszawa, 475 pp.Google Scholar
  25. Marszalek, H.: 1996, “Hydrogeology of the upper part of Kamienna river catchment in the Western Sudetes (in Polish)”, Prace Geologiczno – Mineralogiczne, Wydawnictwo Uniwersytetu Wroclawskiego, pp. 1–100.Google Scholar
  26. Mazur, S.: 1993, “Structural and metamorphic evolution of eastern cover of Karkonosze granite between Niedamirow, Leszczyniec and Kowary, (in Polish)”, Ph.D. thesis, Inst. Geol. Sci., Univ. Wroclaw, Wroclaw, Poland.Google Scholar
  27. Mierzejewski, M. P.: 1985, “The geology of the granite part of Karkonosze Mts, (in Polish)”, in A. Jahn (ed.), Karkonosze Polskie, Ossolineum, Wroclaw, pp. 17–42.Google Scholar
  28. Mierzejewski, M. P.: 1990, “The Izera-Karkonosze Block and its tectonic development (Sudetes, Poland)”, N. Jb. Geol. Paläont. Abh. Stuttgart 179, 197–222.Google Scholar
  29. Mizutani, Y. and Rafter, T.A.: 1973, “Isotopic behaviour of sulphate oxygen in the bacterial reduction of sulphate”, Geochem. J. 6, 183–191.Google Scholar
  30. Nakai, N. and Jensen, M.L.: 1964, “The kinetic isotope effect in the bacterial reduction and oxidation of sulfur”, Geochim. Cosmochim. Acta 28, 1893–1912.CrossRefGoogle Scholar
  31. Narkern1ptsunkern-4pt ebski, W.: 1968, “Geochemistry and the problem of origin of metabasic rocks of the Rudawy Janowickie Mnt. (E. Karkonosze)”, Bull. Acad. Polon. Sci. 16, 1.Google Scholar
  32. Narkern1ptsunkern-4pt ebski W. and Teisseyre J. H.: 1971, “On petrogenesis of the Paczyn gneisses in the West Sudetes”, Bull. Acad. Polon. Scienc. 19, No. 4.Google Scholar
  33. Nordstrom, D.K.: 1977, “Hydrogeochemical and microbiological factors affecting the heavy metal chemistry of an acid mine drainage system”, Ph.D. Disseration, Stanford Univ, Stanford, Ca., 210 pp.Google Scholar
  34. Parafiniuk, J.: 1991, “Fibrofferite, slavikite and pickeringite from the oxidation zone of pyrite-bearing schitsts in Wiesciszowice (Lower Silesia)”, Miner. Pol. 22, 3–15.Google Scholar
  35. Parafiniuk, J. and Dobrzynski, D.: 1995, “Geochemical processes forming the chemical composition of water in the area of abandoned pyrite mine at Wiesciszowice (Lower Silesia, SW Poland)”, Wspólczesne Problemy Hydrogeologii 7, 375–382.Google Scholar
  36. Parafiniuk, J.: 1996, “Sulphate minerals and their origin in the weathering zone of the piryte bearing schists at Wiesciszowice (Rudawy Janowickie Mnt.), Western Sudetes”, Act. Geol. Polonica 46, 353–414.Google Scholar
  37. Payne, B.R. and Yurtsever, Y.: 1974, “Environmental isotopes as a hydrogeological tool in Nicaragua”, in Proceedings of Isotope Techniques in Ground-Water Hydrology, IAEA, Viena, pp. 193–200.Google Scholar
  38. Pazdro, Z. and Kozerski, W.: 1990, General Hydrogeology (in Polish), Wydawnictwa Geologiczne, Warszawa., 623 pp.Google Scholar
  39. Regional Inspectorate of Environmental Protection – a report.: 2001, Wroclaw (in Polish), Ed. WIOś, Wroclaw.Google Scholar
  40. Sigenthaler, U. and Oeschger, H.: 1980, “Correlation of 18O in precipitation with temperature and altitude”, Nature 285, 314.CrossRefGoogle Scholar
  41. Singer, P.C. and Stumm, W.: 1969, “Oxygenation of ferrous iron”, FWQA Rept. 14010-06/69.Google Scholar
  42. Smith, E.E., Svanks, K. and Shumate, K.S.: 1968, “Sulfide to sulphate reaction studies”, in Proceedings of 2nd Symp. Coal Mine Drainage Res., Pittsburgh, Pa., pp. 12–34.Google Scholar
  43. Smulikowski, K.: 1952, Geochemia. Wyd. Państw. Inst. Geolog., Warszawa.Google Scholar
  44. Staffa, M., Mazurski, K. R., Czerwiński, J., Pisarski, G. and Potocki, J.: 1998, Slownik Geografii Turystycznej Sudetów. Rudawy Janowickie. I-BIS, Wroclaw, 314 pp.Google Scholar
  45. Stahl, W., Aust, H. and Dounas, A.: 1974, “Origin of Artesian and thermal waters determined by oxygen, hydrogen and carbon isotope analysis of water samples from the Sperkhios Valley”, Proceedings of Grees. Conf. Isotope Techniques in Ground-Water Hydrology, Vol. I, IAEA, Vienna, pp. 317–339.Google Scholar
  46. Taylor, B.E., Wheeler, M.C. and Nordstrom, D.K.: 1984, “Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite”, Geochimica and Cosmochimica Acta 48, 2669–2678.CrossRefGoogle Scholar
  47. Teisseyre, J. H.: 1973, “Metamoprphic rocks from Rudawy Janowickie and Grzbiet Lasocki”, Geol. Sudetica 8, 112.Google Scholar
  48. Trembaczowski, A.: 1990, “Sulfur and oxygen isotope fractionation as a result of bacterial mineral-forming processes in biogeochemical cycling”, in M.O., Jkern1ptsunkern-4pt edrysek (ed.), Course-book of Isotope Geology. Third School on Physics of Minerals, Part I: Isotope.Google Scholar
  49. Yanagishava, F. and Sakai, H.: 1983, “Thermal decomposition of barium sulphate – vanadium pentaoxide – silica glass mixtures for preparation of sulphur dioxide in sulphur isotope ratio measurments”, Anal. Chem. 55, 985–987.CrossRefGoogle Scholar
  50. Vogel, J.C., Lerman, J.C. and Mook, W.G.: 1975, “Natural isotopes in surface and groundwaters from Argentina, Hydrol. Sciences Bull. 20, 203–221.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Piotr Jezierski
    • 1
  • Anna Szynkiewicz
    • 2
    Email author
  • Mariusz-Orion Jsunędrysek
    • 3
  1. 1.Polish Geological InstituteSzczecinPoland
  2. 2.Laboratory of Isotope Geology and Geoecology, Institute of Geological SciencesUniversity of WrocławWrocławPoland
  3. 3.Department of Applied Geology and Geochemistry, Institute of Geological SciencesUniversity of WrocławWrocławPoland

Personalised recommendations