Water, Air, & Soil Pollution

, Volume 171, Issue 1–4, pp 111–133 | Cite as

Relationship Between Large-Scale Atmospheric States, Subsidence, Static Stability and Ground-Level Ozone in Illinois, USA

  • Gidon EshelEmail author
  • Joseph J. Bernstein


We analyze ground level ozone pollution in Illinois. We find that during elevated ground level ozone conditions, Illinois is located to the south-west of a high pressure system centered over south-eastern Canada. This state causes weakening of the climatological westerlies, near-surface southerlies and upper troposphere northerlies. This results in corresponding weakening of both lower troposphere heating and upper troposphere cooling by lateral advective heat flux divergence. Heat balance is restored primarily by enhanced subsidence, most notably between the surface and ∼400 mb. The strengthened subsidence suppresses boundary layer deepening by upward surface heat fluxes, resulting in a shallower than normal boundary layer during times of elevated ground level ozone. We argue that subsidence induced boundary layer suppression, aided by elevated temperatures, is the primary cause of the elevated ground level ozone events. The enhanced subsidence during those times also dries the lower troposphere, reducing the probability of moist convection, and thus slowing boundary layer ventilation.


subsidence ozone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, L., Gangoiti, G., Navazo, M., Millan, M. M. and Mantilla, E.: 2000, ‘Transport of tropospheric ozone over the Bay of Biscay and the eastern cantabrian coast of Spain’, J. App. Meteor. 39, 475–486.CrossRefGoogle Scholar
  2. American Lung Associationn, State of the Air 2005, available from
  3. Aneja, V. P., Claiborn, C. S., Li, Z. and Murthy, A.: 1994, ‘Trends, seasonal variations, and analysis of high-elevation surface nitric acid, ozone, and hydrogen peroxide’, Atmos. Env. 28, 1781–1790.CrossRefGoogle Scholar
  4. Arya, S. P.: 1999, Air Pollution Meteorology and Dispersion, Oxford, pp. 310.Google Scholar
  5. Avol, E. L., Linn, W. S., Venet, T. G., Shamoo, D. A. and Hackney, J. D.: 1984, ‘Comparative respiratory effects of ozone and ambient oxidant pollution exposure during heavy exercise’, J. Air Pollution Control Assoc. 31, 666–668.Google Scholar
  6. Berman, S., Ku, J. Y. and Rao, S. T.: 1999, ‘Spatial and temporal variation in the mixing depth over the northeastern United States during the summer of 1995’, J. App. Meteor. 38, 1661–1673.CrossRefGoogle Scholar
  7. Bloomfield, P., Royle, J. A., Steinberg, L. J. and Yang, Q.: 1996, ‘Accounting for meteorological effects in measuring urban ozone levels and trends’, Atmos. Environ. 30, 3067–3077.CrossRefGoogle Scholar
  8. Carmichael, G. R., Ferm, M., Thongboonchoo, N., Woo, J.-H., Chan, L. Y., Murano, K., Viet, P. H., Mossberg, C., Bala, R., Boonjawat, J. et al.: 2003, ‘Measurements of sulfur dioxide, ozone and ammonia concentrations in Asia, Africa, and South America using passive samplers’, Atmos. Env. 37, 1293–1308.CrossRefGoogle Scholar
  9. Clark, T. L. and Karl, T. R.: 1982, ‘Application of prognostic meteorological variables to forecasts of daily maximum one hour ozone concentrations in the norhteastern United States’, J. App. Meteor. 21, 1662–1671.CrossRefGoogle Scholar
  10. Collins, W. D., Hack, J. J., Boville, B. A., Rasch, P. J., Williamson, D. L., Kiehl, J. T., Briegleb, B., Mccaa, J. R., Bitz, C., Lin, S.-J., Rood, R. B., Zhang, M. and Dai, Y.: 2003, Description of the NCAR Community Atmosphere Model (CAM2), available on-0line at
  11. Davis, J. M., Eder, B. K. and Bloomfield, P.: 1998, ‘Modeling ozone in the Chicago urban area’, in D. Nychka, W. Piegorsch and L. Cox (eds.), Case Studies in Environmental Statistics, Springer Verlag, pp. 207Google Scholar
  12. Deardroff, J. W.: 1972, ‘Parameterization of the planetary boundary layer for use in general circulation models’, Mon. Weath. Rev. 100, 93–106.CrossRefGoogle Scholar
  13. Dye, T. S., Roberts, P. T. and Korc, M. E.: 1995, ‘Observations of transport processes for ozone and ozone precursors during the 1991 Lake Michigan ozone study’, J. App. Meteor. 34, 1877–1889.CrossRefGoogle Scholar
  14. Edinger, J. G.: 1963, ‘Modification of the marine layer over coastal Southern California’, J. App. Meteor. 2, 706–712.CrossRefGoogle Scholar
  15. Eshel, G. and Farrell, B. F.: 2001, ‘Thermodynamics of Eastern Mediterranean rainfall variability’, J. Atmos. Sci. 58, 87–92.CrossRefGoogle Scholar
  16. Eshel, G.: 2003, ‘Mediterranean climates’, Israel. J. Earth Sci. 51, 157–168.CrossRefGoogle Scholar
  17. Fiore, A. M., Jacob, D. J., Logan, J. A. and Yin, J. H.: 1998, ‘Long-term trends in ground level ozone over the contiguous United States 1980–1995’, J. Geophys. Res. 103, 1471–1480.CrossRefGoogle Scholar
  18. Flaum, J. B., Rao, S. T. and Zurbenko, I. G.: 1996, ‘Modeling the influence of meteorological conditions on ambient ozone concentration’, J. Air Waste Manage. Assoc. 46, 35–46.Google Scholar
  19. Garratt, J. R.: 1996, The Atmospheric Boundary Layer, Cambridge, pp. 316.Google Scholar
  20. Grunhage, L., Krupa, S. V., Legge, A. H. and Jager, H. J.: 2004, ‘Ambient flux-based critical values of ozone for protecting vegetation: Differing spatial scales and uncertainties in risk assessment’, Atmos. Env. 38, 2433–2437.CrossRefGoogle Scholar
  21. Hanna, S. R. and Chang, J. C.: 1995, ‘Relations between meteorology and ozone in the Lake Michigan region’, J. App. Meteor. 34, 670–678.CrossRefGoogle Scholar
  22. Hogrefe, C., Rao, S. T., Kasibhatla, P., Kallos, G., Tremback, C. J., Hao, W., Olerud, D., Xiu, A., McHenry, J. and Alapaty, K.: 2001, ‘Evaluating the performance of regional-scale photochemical modeling systems: Part I – meteorological predictions’, Atmos. Env. 35, 4159–4174.CrossRefGoogle Scholar
  23. Hogrefe, C., Rao, S. T., Kasibhatla, P., Hao, W., Sistla, G., Mathurd, R. and McHenry, J.: 2001, ‘Evaluating the performance of regional-scale photochemical modeling systems: Part II – ozone predictions’, Atmos. Env. 35, 4175–4188.CrossRefGoogle Scholar
  24. Hogrefe, C., Biswas, J., Lynn, B., Civerolo, K., Ku, J.-Y., Rosenthal, J., Rosenzweig, C., Goldberg, R. and Kinney, P. L.: 2004, ‘Simulating regional-scale ozone climatology over the eastern United States: Model evaluation results’, Atmos. Env. 38, 2627–2638.CrossRefGoogle Scholar
  25. Holstlag, A. A. M. and Moeng, C.-H.: 1991, ‘Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer’, J. Atmos. Sci. 48, 1690–1698.CrossRefGoogle Scholar
  26. Jiang, G., Lamb, B. and Westberg, H.: 2003, ‘Using back trajectories and process analysis to investigate photochemical ozone production in the Puget Sound region’, Atmos. Env. 37, 1489–1502.CrossRefGoogle Scholar
  27. Kalnay, E. and coauthors: 1996, ‘The NCEP/NCAR 40-Year reanalysis project’, Bull. Amer. Meteor. Soc. 77, 437–472.CrossRefGoogle Scholar
  28. Kasibhatla, P. and Chameides, W. L.: 2000, ‘Seasonal modeling of regional ozone pollution in the eastern United States’, Geophys. Res. Lett. 27, 1415–1418.CrossRefGoogle Scholar
  29. Kimlin, M. G. and Taylor, T. E.: 2003, ‘Comparison of the plant-damaging spectral solar ultraviolet radiation between three locations in Eastern USA in the year 2000’, Ag. Forest Meteor. 120, 83–100.CrossRefGoogle Scholar
  30. Lea, D. A.: 1968, ‘Vertical ozone distribution in the lower troposphere near an urban pollution complex’, J. App. Meteor. 7, 252–267.CrossRefGoogle Scholar
  31. Lin, C.-Y. C., Jacob, D. J. and Fiore, A. M.: 2001, ‘Trends in exceedances of the ozone air quality standard in the continental United States, 1980–1998’, Atmos Env. 35, 3217–3228.CrossRefGoogle Scholar
  32. Lippmann, M.: 1989, ‘Effects of ozone on respiratory function and structure’, Ann. Rev. Public Health 10, 49–67.CrossRefGoogle Scholar
  33. Liu, S. C., Trainer, M., Fehsenfeld, F. C., Parrish, D. D., Williams, E. J., Fahey, D. W., Hubler, G. and Murphy, P. C.: 1987, ‘Ozone production in the rural troposphere and the implications for regional and global ozone distribution’, J. Geophys. Res. 92, 4191–4207.CrossRefGoogle Scholar
  34. Lyons, W. A., Tremback, C. J. and Pielke, R. A.: 1995, ‘Applications of the regional atmospheric modeling system (RAMS) to provide input to photochemical grid models for the Lake Michigan Ozone Study (LMOS)’, J. App. Meteor. 34, 1762–1786.CrossRefGoogle Scholar
  35. Mueller, S. F., Song, A., Noms, W. B., Gupta, S. and McNider, R. T.: 1996, ‘Modeling pollutant transport during high-ozone episodes in the southern Appalachian mountains’, J. App. Meteor. 35, 2105–2120.CrossRefGoogle Scholar
  36. Narasimhan, R., Keller, J., Subramaniam, G., Raasch, E., Croley, B., Duncan, K. and Potter, W. T.: 2000, ‘Ozone modeling using neural networks’, J. App. Meteor. 39, 291–296.CrossRefGoogle Scholar
  37. Prinz, B.: 1988, ‘Ozone effects on vegetation’, in I. S. A. Isaksen (ed.), Tropospheric Ozone, Reidell, MA, pp. 161–164.Google Scholar
  38. Rao, S. T., Ku, J.-Y., Berman, S., Zhang, K. and mao, H.: 2003, ‘Summertime characterisitcs of the atmospheric boundary layer and relation ship to ozone level over the eastern United States’, in G. V. Rao, S. Raman and M. P. Singh (eds.), Air Quality, Birkhauser Verlag, pp. 438.Google Scholar
  39. Reynolds, J. H., Caccia, D., Sampson, P. D. and Guttorp, P.: 1999, ‘Meteorological adjustment of Chicago, Illinois, regional surface ozone observations with investigation of trends’, The National Research Center for Statistics and the Environment, The University of Washington, Technical Reports Series, Technical Report No. 25.Google Scholar
  40. Rodwell, M. J. and Hoskins, B. J.: 1996, ‘Monsoons and the dynamics of deserts’, Q. J. R. Meteorol. Soc. 122B, 1385–1404.CrossRefGoogle Scholar
  41. Rossow, W. B. and Garder, L. C.: 1993, ‘Validation of ISCCP cloud detections’, J. Clim. 6, 2370–2393.CrossRefGoogle Scholar
  42. Rohli, R. V., Russo, M. M., Vega, A. J. and Cole, J. B.: 2004, ‘Tropospheric ozone in Louisiana and synoptic circulation’, J. App. Meteor. 43, 1438–1451.CrossRefGoogle Scholar
  43. Samson, P. J. and Ragland, K. W.: 1977, ‘Ozone and visibility reduction in the Midwest: Evidence for large-scale transport’, J. App. Meteor. 16, 1101–1106.CrossRefGoogle Scholar
  44. Schifter, I., Diaz, L., Vera, M., Guzman, E. and Lopez-Salinas, E.: 2003, ‘Impact of sulfur-in-gasoline on motor vehicle emissions in the metropolitan area of Mexico City’, Fuel 82, 1605–1612.Google Scholar
  45. Scire, J. S. and Chang, J.: 1991, ‘Analysis of historical ozone episodes in the SCCCAMP region and comparison with SCCCAMP 1985 field study data’, J. App. Meteor. 30, 551–584.CrossRefGoogle Scholar
  46. Soja, G. and Soja, A.-M.: 1999, ‘Ozone indices based on simple meteorological parameters: Potentials and limitations of regression and neural network models’, Atmos. Env. 33, 4299–4307.CrossRefGoogle Scholar
  47. Stull, R. B.: 1983, An Introduction to Boundary Layer Meteorology, Kluwer, pp. 666.Google Scholar
  48. Vaughan, J., Lamb, B., Frei, C., Wilson, R., Bowman, C., Figueroa-Kaminsky, C., Otterson, S., Boyer, M., Mass, C., Albright, M., Koenig, J., Collingwood, A., Gilroy, M. and Maykut, N.: 2004, ‘A numerical daily air quality forecast system for the Pacific Northwest’, Bull. Amer. Meteor. Soc. 85, 549–561.CrossRefGoogle Scholar
  49. Vogelezang, D. H. P. and Holtslag, A. A. M.: 1996, ‘Evaluation and model impacts of alternative boundary-layer height formulations’, Boundary Layer Meteor. 81, 245–269.CrossRefGoogle Scholar
  50. Wakimoto, R. and McElroy, J. L.: 1986, ‘Lidar Observation of elevated pollution layers over los Angeles’, J. App. Meteor. 25, 1583–1599.CrossRefGoogle Scholar
  51. Wang, X., Lu, W., Wang, W. and Leung, A. Y. T.: 2003, ‘A study of ozone variation trend within area of affecting human health in Hong Kong’, Chemosphere 52, 1405–1410.CrossRefPubMedGoogle Scholar
  52. Wolff, G. T. and Lioy, P. J.: 1978, ‘An empirical model for forecasting maximum daily ozone levels in the northeastern U.S.’, J. Air Pollut. Control Assoc. 28, 1034–1038.Google Scholar
  53. Zhang, J., Rao, S. T. and Daggupaty, S. M.: 1998, ‘Meteorological processes and ozone exceedances in the northeastern United States during the 12–16 July 1995 episode’, J. Appl. Meteor. 37, 776–789.CrossRefGoogle Scholar
  54. Zhang, J. and Rao, S. T.: 1999, ‘The role of vertical mixing in the temporal evolution of ground-level ozone concentrations’, J. App. Meteor. 38, 1674–1691.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of the Geophysical SciencesThe University of ChicagoChicagoU.S.A.
  2. 2.Department of Earth and Planetary SciencesHarvardU.S.A.

Personalised recommendations