Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Morphology and Solutes Content of Atmospheric Particles in an Urban and a Natural Area of São Paulo State, Brazil

  • 121 Accesses

  • 7 Citations


The objectives of this work were to characterize and compare the chemical composition of the water-soluble fraction of the PM10 particles (Dp < 10μm) in two sites: one inside the Metropolitan Area of São Paulo (MASP) and another, 250km apart, inside the State Park of Serra do Mar (CUNHA) part of the Atlantic Forest Reserve, both located in São Paulo State, Brazil. The atmospheric particles were collected during dry and wet season. The morphologic parameters of the particles were characterized for the different size fractions of the collected material. In the aqueous extract of the particulate fine fraction the major ions (Na+, K+, Mg2+, Ca2+, Cl, NO3 , NH4 +, SO4 2−) and trace elements (Al, Mn, Fe, Pb, Cd, Zn, Ti, Ni, Cu, Co, Ba) were determined. The morphological characteristics of the particles collected within the MASP are typical of polluted environment while in CUNHA there is no evidence of this type of contribution. Regarding the solute concentrations it was observed that the most abundant major ions and trace elements were K+, Ca2+, Na+, Cl and Pb, for CUNHA and NO3 , SO4 2−, NH4 + and Mn, Ni, Pb, Co, Cd and Ba for MASP. These differences are associated with the different sources of the particles. In the urban area they are predominantly of pollution origin, mainly from vehicle emissions, and road dust suspension, while in the State Park they are mainly of biogenic, terrigenous and oceanic origins. For these reasons the CUNHA region can be considered to be a regional reference site for studies concerning eventual disturbances in the Cunha background site, derived from transported pollution.

This is a preview of subscription content, log in to check access.


  1. Adamson, I. Y. R., Prieditis, H. and Vincent, R.: 1999, ‘Pulmonary toxicity of an atmospheric particulate sample is due to the soluble fraction’, Toxicology Applied Pharmacology 157(1), 43–50.

  2. Andrade, F., Orsini, C. and Maenhaut, W.: 1994, ‘Relation between aerosol sources and meteorological parameters for inhalable atmospheric particles in MASP, Brasil’, Atmospheric Environment 28({14}), 2307–2315.

  3. Appelo, C. A. J. and Postma, D.: 1993, Geochemistry, Groundwater and Pollution, Balkema, AA, Rotterdam, 536 pp.

  4. Artaxo, P., Maenhaut, W., Storms, H. and Van Grieken, R.: 1990, ‘Aerosol characteristics and sources for the Amazon Basin during the wet season’, Journal of Geophysical Research 95(D10), 16971–16985.

  5. Ausset, P., Lefèvre, R., Philippon, J. and Venet, C.:1994, ‘Présence constante de cendres volantes industrielles dans les croûtes noires d’altération superficielle de monuments français en calcaire compact’, Comptes Rendus de lAcadémie des Sciences de Paris 318(II), 493–499.

  6. Bicudo, D. C., Forti, M. C. and Bicudo, C. E. M.: 2002, Parque Estadual das Fontes do Ipiranga (PEFI): Unidade de Conservação que Resiste à Urbanização de São Paulo, Editora da Secretaria do Meio Ambiente do Estado de São Paulo, São Paulo, Brazil, 351 pp.

  7. Buseck, P. R. and Bradley, J. P.: 1982, ‘Electron beam studies of individual natural and anthropogenic microparticles: Compositions, structures and surface reactions’, in D. R. Schryer, (ed.), Heterogeneous Atmospheric Chemistry American Geophysical Union, Washington DC, USA, pp. 57–76.

  8. Calloway, C. P., Li, S., Buchanan, J. W. and Stevens, R. K.: 1989, ‘A refinement of the potassium tracer method for residential wood smoke’, Atmospheric Environment 23, 67–69.

  9. Castanho, A. D. A. and Artaxo, P.: 2001, ‘Wintertime and summertime São Paulo aerosol source apportionment study’, Atmospheric Environment 35, 4889–4902.

  10. Cauer, M.: 1951, Compendium of Meteorology, American Meteorological Society, Boston, Mass., 1126 pp.

  11. Chesselet, R., Morelli, M. and Buat-Menard, P.: 1972, ‘Some aspects of the geochemistry of marine aerosols’, in D. Dyrssen and D. Jagner, (eds.), The Changing Chemistry of the Oceans, Proceedings of Nobel Symposium 20, Wiley-Interscience, New York, 92pp.

  12. Cicco, V. and Fujieda, M.: 1992, ‘Pesquisa em manejo de bacias hidrográficas em São Paulo’, Anais do 2° Congresso Nacional sobre Essências Nativas, São Paulo, Brazil, pp. 808–816.

  13. Echalar, F., Gaudichet, A., Cachie, H. R. and Artaxo, P.: 1995, ‘Aerosol emissions by tropical forest and savanna biomass burning: Characteristics trace elements and fluxes’, Geophysical Research Letter 22, 3039–3042.

  14. Fornaro, A. and Gutz, I. G. R.: 2003, ‘Wet deposition and related atmospheric chemistry in the Sao Paulo metropolis, Brazil: Part 2 – contribution of formic and acetic acids’, Atmospheric Environment 37, 117–128.

  15. Forti, M. C. and Moreira-Nordemann, L. M.: 1989, ‘Estudo da interação chuva/particulado atmosférico em São José dos Campos, SP’, Ciência e Cultura 4(16), 583–590.

  16. Gordon, G. E.: 1980, ‘Receptor models’, Environmental Science and Technology 14, 792–800.

  17. Hopke, P. K., Xie, Y., Raunema, T., Biegalski, S., Landsberger, S., Maenhaut, W., Artaxo, P. and Cohen, D.: 1997, ‘Characterization of the gent stacked filter unit PM10 sampler’, Aerosol Science and Technology 27, 726–735.

  18. Johansen, A. M., Siefert, R. L. and Hoffmann, M. R.: 1999, ‘Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian sea: anions and cations’, Journal of Geophysical Research 104(D21), 26325–26347.

  19. Johnson, J. J.: 1988, ‘Automotive emissions’, in, A. Y. Watson, R. R. Bates, D. Kennedy, (eds.), Air Pollution, the Automobile and Public Health, National Academy of Sciences, USA, 704 pp.

  20. Kitto, M. E.: 1993, ‘Trace element patterns in fuel oils and gasoline for use in-source apportionment’, Journal of Air Waste Management Association 43, 1381–1388.

  21. Kowalczyk, G. S., Gordon, G. E. and Rheingrover, S. W.: 1982, ‘Identification of atmospheric particulate sources in Washington, DC, using chemical element balances’, Environmental Science and Technology 16, 79–90.

  22. Lichtman, D. and Mroczkowski, S.: 1985, ‘Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis of submicrometer coal fly ash particles’, Environmental Science and Technology 19, 274–277.

  23. Mamane, Y., Miller, J. L. and Dzubay, T. G.: 1986, ‘Characterization of individual fly-ash particles emitted from coal- and oil-fired power plants’, Atmospheric Environment 20(11), 2125–2135.

  24. Marinoni, N., Birelli, M. P., Rostagnol, C. and Pavesi, A.: 2003, ‘The effects of atmospheric multipollutants on modern concrete’, Atmospheric Environment 37, 4701–4712.

  25. Mészáros, E., Barcza, T., Gelencsér, A., Hlavay, J., Kiss, G., Krivácsy, Z., Mólnar, A. and Polyák, K.: 1997, ‘Size distributions of inorganic and organic species in the atmospheric aerosol of Hungary’, Journal of Aerosol Science 28(7), 1163–1175.

  26. Mihalopoulos, N., Stephanou, E., Kanakidou, M., Pilitsidis, S. and Bousquet, P.: 1997, ‘Tropospheric aerosol ionic composition in the Eastern Mediterranean region’, Tellus 49B(3), 314–326.

  27. Millero, F. J. and Sohn, M. L.: 1992, Chemical Oceanography, CRC Press, Boca Raton, Fla., 531 pp.

  28. Ondov, J. M., Zoller, W. H. and Gordon, G. E.: 1982, ‘Trace element emissions on aerosols from motor vehicles’, Environmental Science and Technology 16, 318–328.

  29. Orsini, C. Q., Artaxo, P. and Tabacniks, M. H.: 1982, ‘Preliminary data on atmospheric aerosol of the Amazon Basin’, Atmospheric Environment 16, 2177–2181.

  30. Orsini, C., Artaxo, P. and Tabacniks, M. H.: 1984, ‘Trace elements in the urban aerosol of São Paulo’, Ciência e Cultura 36, 823–828.

  31. Orsini, C. Q., Tabacniks, M. H., Artaxo, P., Andrade, M. F. and Kerr, A. S.: 1986, ‘Characteristics of fine and coarse particles of natural and urban aerosols of Brazil’, Atmospheric Environment 20(11), 2259–2269.

  32. Piña, A. A., Villaseñor, G. T., Fernandez, M. M., Kudra, A. L. and Ramos, R. L.: 2000, ‘Scanning electron microscope and statistical analysis of suspended heavy metals particles in San Luis Potosi, Mexico’, Atmospheric Environment 34, 4103–4112.

  33. Riley, J. P. and Chester, R., 1971. Introduction to Marine Chemistry. Academic Press, London.

  34. Robson, A. J. and Neal, C.: 1997, ‘Regional water quality of river Tweed’, The Science of the Total Environment 194/195, 173–192.

  35. Rocha, F. R., da Silva, J. A. F., Lago, C. L., Fornaro, A. and Gutz, I. G. R.: 2003, ‘Wet deposition and related atmospheric chemistry in the São Paulo metropolis, Brazil: Part 1. Major inorganic ions in rainwater as evaluated by capillary electrophoresis with contactless conductivity detection’, Atmospheric Environment 37, 105–115.

  36. Rojas, C. M. and Van Grieken, R. E.: 1992, ‘Electron microprobe characterization of individual fly aerosol particle collected by air craft above the Southern bight of the North Sea’, Atmospheric Environment 26A(7), 1231–1237.

  37. Sanchez-Ccoyllo, O. R. and Andrade, M. F.: 2002, ‘The influence meteorological conditions on the behavior of pollutants concentrations in São Paulo, Brazil’, Environmental Pollution 116, 257–263.

  38. Storms, H., Van Dyck, P. and Van Grieken, R.: 1984, ‘Electron microprobe observations on recrystallization affecting pixe-analysis of marine aerosol deposits’, Journal Trace and Microprobe Technology 2, 103–117.

  39. Sturges, W. T. and Barrie, L. A.: 1988, ‘Chlorine, bromine and iodine in Arctic aerosols’, Atmospheric Environment 22, 1179–1194.

  40. Tem Brink, H. M., Mallant, R., Gouman, J. M., Kos, G. and Van de Vate, J. M.: 1980, ‘SO$_{2}$ conversion in a marine atmosphere’, in B. Versino and H. Ott (eds.), Proceedings of the First European Symposium on Physico-Chemical Behaviour of the Atmospheric Pollutants, Ispra, Italy, 16–18 October, pp. 298–306.

  41. Thurston, G. D. and Spengler, J. D.: 1985, ‘A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston’, Atmospheric Environment 19, 9–25.

  42. UNESCO: 1998, ‘What are Biospheres Reserves’, [on line] www.lsi.usp.br/econet/snuc/biosf/ plano/biosf01.htm.

  43. Vautz, W., Pahl, S., Pilger, H., Schilling, M. and Klockow, D.: 2003, ‘Deposition of trace substances via cloud droplets in the Atlantic rain forest of the Serra do Mar, Sao Paulo State, SE Brazil’, Atmospheric Environment 37, 3277–3287.

  44. Wittmaack, K.: 2005, ‘Brochosomes produced by leafhoppers-a widely unknown, yet highly abundant species of bioaerosols in ambient air’, Atmospheric Environment 39, 1173–1180.

  45. Yamasoe, M. A., Artaxo, P., Miguel, A. H. and Allen, A. G.: 2000, ‘Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: Water-soluble species and trace elements’, Atmospheric Environment 34, 1641–1653.

  46. Zhou, G. and Tazaki, K.: 1996, ‘Seasonal variation of gypsum in aerosol and its effect on the acidity of wet precipitation on the Japan sea side of Japan’, Atmospheric Environment 30, 3301–3308.

  47. Zou, L. Y. and Hooper, M. A.: 1997, ‘Size resolved airborne particles and their morphology in central Jakarta’, Atmospheric Environment 31(8), 1167–1172.

Download references

Author information

Correspondence to M. C. Forti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bourotte, C., Forti, M.C., Melfi, A.J. et al. Morphology and Solutes Content of Atmospheric Particles in an Urban and a Natural Area of São Paulo State, Brazil. Water Air Soil Pollut 170, 301–316 (2006). https://doi.org/10.1007/s11270-005-9001-1

Download citation


  • Atlantic Forest
  • PM10
  • major ions
  • soluble fraction
  • trace elements
  • urban pollution