Water, Air, and Soil Pollution

, Volume 163, Issue 1–4, pp 53–79 | Cite as

Transmission of Atmospherically Derived Trace Elements Through an Undeveloped, Forested Maryland Watershed

  • Joseph R. Scudlark
  • Karen C. Rice
  • Kathryn M. Conko
  • Owen P. Bricker
  • Thomas M. Church


The transmission of atmospherically derived trace elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) was evaluated in a small, undeveloped, forested watershed located in north-central Maryland. Atmospheric input was determined for wet-only and vegetative throughfall components. Annual throughfall fluxes were significantly enriched over incident precipitation for most elements, although some elements exhibited evidence of canopy release (Mn) or preferential uptake (As, Cr, and Se). Stream export was gauged based on systematic sampling under varied flow regimes. Particle loading appears to contribute significantly to watershed export (> 10%) for only As, Pb, and Fe, and then only during large precipitation/runoff events. The degree of watershed transmission for each trace element was evaluated based on a comparison of total, net atmospheric input (throughfall) to stream export over an annual hydrologic cycle. This comparison indicates that the atmospheric input of some elements (Al, Cd, Ni, Zn) is effectively transmitted through the watershed, but other elements (Pb, As, Se, Fe, Cr, Cu) appear to be strongly sequestered, in the respective orders noted. Results suggest that precipitation and subsequent soil pH are the primary factors that determine the mobility of sequestered trace element phases.

To further resolve primary atmospheric and secondary weathering components, the geochemical model NETPATH was applied. Results indicate that minerals dissolved include chlorite, plagioclase feldspar, epidote, and potassium feldspar; phases formed were kaolinite, pyrite, and silica. The model also indicates that weathering processes contribute negligible amounts of trace elements to stream export, indicative of the unreactive orthoquartzite bedrock lithology underlying the watershed. Thus, the stream export of trace elements primarily reflects atmospheric deposition to the local watershed.


atmospheric deposition forested watershed Maryland throughfall trace elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avila, A. and Rodrigo, A.: 2004, ‘Trace metal fluxes in bulk deposition, throughfall and stemflow at two evergreen oak stands in NE Spain subject to different exposure to the industrial environment’, Atmos. Environ. 38, 171.CrossRefGoogle Scholar
  2. Baker, J. E., Poster, D. L., Clark, C. A., Church, T. M., Scudlark, J. R., Ondov, J. M., Dickhut, R. M. and Cutter, G. A.: 1997, ‘Loadings of Atmospheric Trace Elements and Organic Contaminants to the Chesapeake Bay’, in J. E. Baker (ed.), Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters, SETAC Press, Pensacola, FL, USA, Chap. 9, pp. 171–194.Google Scholar
  3. Bondeitti, E. A., Hoffman, F. O. and Larsen, I. L.: 1984, ‘Air-to-vegetation transfer rates of natural sub-micron aerosols’, J. Environ. Radioactivity 1, 5.Google Scholar
  4. Buchanan, T. J. and Somers, W. P.: 1968, Stage Measurements at Gauging Stations: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chap. A7, pp. 28.Google Scholar
  5. Buchanan, T. J. and Somers, W. P.: 1969, Discharge Measurements at Gauging Stations: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chap. A8, pp. 65.Google Scholar
  6. Castro, M. S. and Morgan, R. P. II: 2002, ‘Input-output budgets of major ions for a forested watershed in western Maryland’, Water Air Soil Pollut. 119, 121.Google Scholar
  7. Castro, M. S., Scudlark, J. R., Church, T. M. and Mason, R. P.: 2000, Input-Output Budgets of Major Ions, Trace Elements and Mercury in a Forested Maryland Watershed. Maryland Power Plant Research Program Report PPAD-AD-1, Annapolis, MD, pp. 72.Google Scholar
  8. Church, T. M. and Scudlark, J. R.: 1992, ‘Trace elements in precipitation at the mid-Atlantic coast: A successful record since 1982’, in E. S. Verry and S. J. Vermette (eds.), The Deposition of Trace Metals in Our Environment, USDA Forest Service Report NC-150, Philadelphia, PA, USA, October 8, 1991, pp. 45–46.Google Scholar
  9. Church, T. M. and Scudlark, J. R.: 1998, ‘Trace metals in estuaries: A delaware bay synthesis’, in H. E. Allen, A. W. Garrison and G. W. Luther III (eds.), Metal Speciation and Contamination of Surface Water, Ann Arbor Press, Inc., Chelsea, MI, USA, Chap. 1, pp. 1–21.Google Scholar
  10. Church, T. M., Scudlark, J. R. and Conko, K. M.: 2002, ‘Atmospheric and fluvial sources of trace metals to the Delaware Inland Bays’, in R. L. Lipnick, R. P. Mason, M. L. Phillips and C. U. Pittman (eds.), Chemicals in the Environment: Fate, Impacts and Remediation, ACS Symposium Series No. 806, Washington, D.C., USA, Chapter 13, pp. 243–257.Google Scholar
  11. Church, T. M., Scudlark, J. R., Conko, K. M., Bricker, O. P. and Rice, K. C.: 1998, Transmission of Atmospherically Deposited Trace Elements Through and Undeveloped, Forested Maryland Watershed, Maryland Department of Natural Resources Report CBWP-MANTA-AD-98-2, Annapolis, MD, pp. 87.Google Scholar
  12. Correll, D. L., Goff, N. M. and Peterjohn, W. T.: 1984, ‘Ion balances between precipitation inputs and rhode river discharges’, in O. P. Bricker (ed.), Geological Aspects of Acid Deposition, Butterworths, Boston, MA, USA, Acid Precipitation Series Vol. 7, Chap. 5.Google Scholar
  13. Cosby, B. J., Ryan, P. F., Webb, J. R., Hornberger, G. M. and Galloway, J. N.: 1991, ‘Mountains of Western Virginia’, in D. F. Charles (ed.), Acid Deposition and Aquatic Ecosystems: Regional Case Studies, Springer-Verlag, New York, pp. 297–318.Google Scholar
  14. Cutter, G. A.: 1986, ‘Speciation of Selenium and Arsenic in Natural Waters and Sediments Volume 1: Selenium Speciation’, EPRI Final Report EA-4641, Vol. 1. Research Project 2020-1.Google Scholar
  15. Cutter, G. A. and Church, T. M.: 1986, ‘Selenium in Western Atlantic precipitation’, Nature 322, 720.Google Scholar
  16. Cutter, L. S., Cutter, G. A. and San Diego-McGlone, M. L. C.: 1991, ‘Simultaneous determination of inorganic arsenic and antimony species in natural waters using selective hydride generation with gas chromatograph-photoionization detection’, Anal. Chem. 36, 1138.Google Scholar
  17. Deer, W. A., Howie, R. A. and Zussman, J.: 1965, Rock Forming Minerals (5th edn.), Longsmans, Green and Company, Ltd., London, UK.Google Scholar
  18. Draaijers, G. P. J., Erisman, J. W., Spranger, T. and Wyers, G. P.: 1996, ‘The application of throughfall measurements for atmospheric deposition monitoring’, Atmos. Environ. 30, 3349.Google Scholar
  19. Drever, J. I.: 1988, The Geochemistry of Natural Waters (2nd edition), Prentice-Hall, Upper Saddle River, NJ, USA, pp. 438.Google Scholar
  20. Erel, Y., Morgan, J. J. and Patterson, C. C.: 1991, ‘Natural levels of lead and cadmium in a remote mountain stream’, Geochim. Cosmochim. Acta 55, 707.Google Scholar
  21. Erel, Y., Patterson, C. C., Scott, M. J. and Morgan, J. J.: 1990, ‘Transport of industrial lead in snow through soil to streamwater and groundwater’, Chem. Geol. 85, 383.Google Scholar
  22. Fauth, J. L.: 1977. Geologic Map of the Catoctin Furnace and Blue Ridge Summit quadrangles, Maryland: Maryland Geological Survey, 1 sheet, scale 1:24,000.Google Scholar
  23. Friedland, A. J., Craig, B. W., Miller, E. K., Herrick, G. T., Siccama, T. G. and Johnson, A. H.: 1992, ‘Decreasing lead levels in the forest floor of the northeastern USA’, Ambio 21, 400.Google Scholar
  24. Godfrey, J. T., Foster, G. D. and Lippa, K. A.: 1995, ‘Estimated annual loads of selected organic contaminants to Chesapeake Bay via a major tributary’, Environ. Sci. Technol. 29, 2059.Google Scholar
  25. Greenburg, R. R., Zoller, W. H. and Gordon, G. E.: 1978, ‘Composition and size distribution of particles released in refuse incineration’, Environ. Sci. Technol. 19, 566.Google Scholar
  26. Gustaffson, J. P. and Jacks, G.: 1995, ‘Arsenic geochemistry in forested soil profiles as revealed by solid phase studies’, Appl. Geocehm. 10, 307.Google Scholar
  27. Han, M.: 1992, Receptor modeling of airborne pollutants in the State of Maryland. Ph.D. Dissertation, University of Maryland.Google Scholar
  28. Hansen, K., Draaijers, G. P. J., Ivens, W. P. M., Gundersen, P. and vanLeeuwen, N. F. M.: 1994, ‘Concentration variations in rain and canopy throughfall collected sequentially during individual rain events’, Atmos. Environ. 28, 3195.Google Scholar
  29. Hanson, P. J. and Lindberg, S. E.: 1991, ‘Dry deposition of reactive nitrogen compounds: A review of leaf, canopy and non-foliar measurements’, Atmos. Environ. 25A, 1615.Google Scholar
  30. Heinrichs, H. and Mayer, R.: 1980, ‘The role of forest vegetation in the biogeochemical cycle of heavy metals’, J. Environ. Qual. 9, 111.Google Scholar
  31. Helz, G. R., Ferni, K. L., Nichols, M. and Sinex, A. S.: 1985, ‘Processes controlling Fe, Mn, and Zn in sediments of northern Chesapeake Bay’, Estuarine Coastal Shelf Sci. 21, 1–16.Google Scholar
  32. Hicks, B. B.: 1986, ‘Measuring dry deposition: A re-assessment of the state of the art’, Water Air Soil Pollut. 30, 75–90.CrossRefGoogle Scholar
  33. Johnson, D. W. and Lindberg, S. E.: 1992, Atmospheric Deposition and Forest Nutrient Cycling, Springer-Verlag, New York, pp. 707.Google Scholar
  34. Jordan, T. E., Correll, D. L., Weller, D. E. and Goff, N. M.: 1995, ‘Temporal variation in precipitation chemistry on the shore of the Chesapeake Bay’, Water Air Soil Pollut. 83, 263.Google Scholar
  35. Jouraeva, V. A., Johnson, D. L., Hassett, J. P. and Nowak, D. J.: 2002, ‘Differences in accumulation of PAHs and metals on the leaves of Tilia x euchlora and Pyrus calleryana’, Environ. Pollut. 120, 331.PubMedGoogle Scholar
  36. Kabata-Pendias, A. and Pendias, H.: 1984, Trace Elements in Soils and Plants, CRC Press, Inc., Boca Raton, FL, pp. 315.Google Scholar
  37. Katz, B. G., Bricker, O. P. and Kennedy, M. M.: 1985, ‘Geochemical mass-balance relationships for selected ions in precipitation and streamwater, Catoctin Mountains, Maryland’, Amer. Journ. Sci. 285, 962.Google Scholar
  38. Kennedy, E. J.: 1983. Computation of Continuous Records of Streamflow: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chap. A13, pp. 53.Google Scholar
  39. Kennedy, E. J.: 1984. Discharge Ratings at Gauging Stations: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chap. A10, pp. 59.Google Scholar
  40. Kim, G., Scudlark, J. R. and Church, T. M.: 2000, ‘Atmospheric wet deposition of trace elements to Chesapeake and Delaware Bays’, Atmos. Environ. 34, 3437.Google Scholar
  41. Kolka, R. K., Nater, E. A., Gringal, D. F. and Verry, E. S.: 1999, ‘Atmospheric inputs of mercury and organic carbon into a forested upland/bog watershed’, Water Air Soil Pollut. 113, 273.Google Scholar
  42. Kowalczyk, G. S., Gordon, G. E. and Rheingrover, S. W.: 1982, ‘Identification of atmospheric particulate sources in Washington, D.C., using chemical element balances’, Environ. Sci. Technol. 16, 79–90.Google Scholar
  43. Lapham, D. M.: 1958, ‘Structural and chemical variations in chromium chlorite’, Am. Mineralogist 43, 921.Google Scholar
  44. Lawson, N. M. and Mason, R. P.: 2001, ‘Concentration of mercury, methylmercury, cadmium, lead, arsenic and selenium in the rain and stream water of two contrasting watersheds in western Maryland’, Water Res. 35, 4039.PubMedGoogle Scholar
  45. Lindberg, S. E.: 1989, ‘Behavior of Cd, Mn, and Pb in Forest-Canopy Throughfall, in J.M. Pacyna and B. Ottar (eds.), Control and Fate of Atmospheric Trace Metals, Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 233–257.Google Scholar
  46. Lindberg, S. E., Harriss, R. C. and Turner, R. R.: 1982, ‘Atmospheric deposition of metals to forest vegetation’, Science 215, 1609.Google Scholar
  47. Lindberg, S. E. and Lovett, G. M.: 1985, ‘Field measurements of dry deposition rates of particles to inert and foliar surfaces in a forest’, Environ. Sci. Technol. 19, 228.Google Scholar
  48. Lindberg, S. E., Lovett, G. M., Richter, D. D. and Johnson, D. W.: 1986, ‘Atmospheric deposition and canopy interactions of major ions in a forest’, Science 231, 141.Google Scholar
  49. Lindberg, S. E., Owens, J. G. and Stratton, W. J.: 1994, ‘Application of throughfall methods to estimate dry deposition of mercury’, in C. J. Watras and J. W. Huckabee (eds.), Mercury Pollution: Integration and Synthesis, Lewis Publishers, Chelsea, MI, pp. 261–271.Google Scholar
  50. Lindberg, S. E. and Turner, R. R.: 1988, ‘Factors influencing atmospheric deposition, stream export, and landscape accumulation of trace metals in forested watersheds’, Water Air Soil Pollut. 39, 123.Google Scholar
  51. Lovett, G. M.: 1994, ‘Atmospheric deposition of nutrients and pollutants to North America: An ecological perspective’, Ecol. Appl. 4, 629.Google Scholar
  52. Lovett, G. M. and Lindberg, S. E.: 1984, ‘Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall’, J. Appl. Ecol. 21, 1013.Google Scholar
  53. Lucey, D., Hadjiiski, L., Hopke, P. K., Scudlark, J. R. and Church, T.: 2001, ‘Identification of sources of pollutants in precipitation measured at the mid-Atlantic US coast using potential source contribution function (PSCF)’, Atmos. Environ. 35, 3979.Google Scholar
  54. Magill, A. H., Aber, J. D., Bernston, G. M., McDowell, W. H., Nadelhoffer, K. J., Melillo, J. M. and Steudler, P. A.: 2000, ‘Long-term nitrogen additions and nitrogen saturation in two temperate forests’, Ecosystems 3, 238.CrossRefGoogle Scholar
  55. Matthews, E. D.: 1960, ‘Soil Survey of Frederick County, Maryland’, U.S. Department of Agriculture, Soil Conservation Service, Series 1956, No. 15, 144 pp.Google Scholar
  56. McKnight, D. M. and Bencala, K. E.: 1990, ‘The chemistry of iron, aluminum, and dissolved organic material in three acidic, metal-enriched, mountain streams, as controlled by watershed and in-stream processes’, Water Resour. 26, 3087.Google Scholar
  57. National Oceanic & Atmospheric Administration (NOAA): 1981, ‘Division Normals and Standard Deviation of Temperature and Precipitation (1931-80)’, U.S. Department of Commerce, Climatography of the United States, No. 85, 176 pp.Google Scholar
  58. Nieminen, T. M., Derome, J. and Helmisaari, H.-S.: 1999, ‘Interactions between precipitation and Scots pine canopies along a heavy metal pollution gradient’, Environ. Pollut. 106, 129.PubMedGoogle Scholar
  59. Nriagu, J. O.: 1989, ‘A global assessment of natural sources of atmospheric trace metals’, Nature 338, 47.CrossRefGoogle Scholar
  60. Parker, G. G.: 1983, ‘Throughfall and stemflow in the forest nutrient cycle’, Adv. Ecol. Res. 13, 58.Google Scholar
  61. Patterson, C. C.: 1965, ‘Contaminated and natural lead environments of man’, Arch. Env. Health 11, 344.Google Scholar
  62. Patterson, C. C. and Settle, D. M.: 1987, ‘Review of data on eolian fluxes of industrial and natural lead to the lands and seas in remote regions on a global scale’, Marine Chem. 22, 137.Google Scholar
  63. Petty, W. H. and Lindberg, S. E.: 1990, ‘An intensive 1-month investigation of trace metal deposition and throughfall at a mountain spruce forest’, Water Air Soil Pollut. 53, 213.Google Scholar
  64. Pierce, M. L. and Moore, C. B.: 1982, ‘Adsorption of arsenite and arsenate on amorphous iron hydroxide’, Water Res. 16, 1247.Google Scholar
  65. Plummer, L. N., Prestemon, E. C. and Parkhurst, D. L.: 1994, ‘An Interactive Code (netpath) for Modeling Net Geochemical Reactions Along a Flow Path Version 2.0’, U.S. Geological Survey Water-Resources Investigations Report 94-4169, 130 pp.Google Scholar
  66. Rea, A. W., Keeler, G. J. and Scherbatskoy, T.: 1996, ‘The deposition of mercury in throughfall and litterfall in the Lake Champlain watershed: A short-term study’, Atmos. Environ. 30, 3257.Google Scholar
  67. Rice, K. C. and Bricker, O. P.: 1995, ‘Seasonal cycles of dissolved constituents in streamwater in two forested catchments in the Mid-Atlantic region of the Eastern USA’, J. Hydrol. 170, 137.Google Scholar
  68. Rice, K. C. and Bricker, O. P.: 1996, ‘Hydrologic and Geochemical Factors Affecting the Chemistry of Small Headwater Streams in Response to Acidic Deposition on Catoctin Mountain, North-Central Maryland’, U.S. Geological Survey Water-Resources Investigations Report 95-4155, pp. 63.Google Scholar
  69. Rice, K. C., Kennedy, M. M., Bricker, O. P. and Donnelly, C. A.: 1993, ‘Data On the Quantity and Chemical Quality of Precipitation, Catoctin Mountain, North-Central Maryland, 1982–91, U.S. Geological Survey Open-File Report 93–169, pp. 46.Google Scholar
  70. Ruhling, A. and Tyler, G.: 1973, ‘Heavy metal pollution and decomposition in spruce needle litter’, Oikos 24, 264.Google Scholar
  71. Ryan, P. F., Hornberger, G. M., Cosby, B. J., Galloway, J. N., Webb, J. R. and Rastetter, E. B.: 1989, ‘Changes in the chemical composition of streamwater in two catchments in the Shenandoah National Park, Virginia, in response to atmospheric deposition of sulfur’, Water Resour. Res. 25, 2091.Google Scholar
  72. Salomons, W. and Forstner, U.: 1984, Metals in the Hydrocycle, Springer-Verlag, New York, pp. 349.Google Scholar
  73. Scudlark, J. R. and Church, T. M.: 1988, ‘The atmospheric deposition of arsenic and association with acid precipitation’, Atmos. Environ. 22, 937.Google Scholar
  74. Scudlark, J. R. and Church, T. M.: 1997, ‘Atmospheric deposition of trace elements to the Mid-Atlantic Bight’, in J. E. Baker (ed.), Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters, SETAC Press, Pensacola, FL, USA, Chap. 10, pp. 195–208.Google Scholar
  75. Scudlark, J. R., Church, T. M., Conko, K. M. and Moore, S. M.: 1992, ‘A method for the automated collection, proper handling and accurate analysis of trace metals in precipitation’, in E. S. Verry and S. J. Vermette (eds.), The Deposition of Trace Metals in Our Environment, USDA Forest Service Report NC-150, Philadelphia, PA, USA, October 8, 1991, pp. 57–71.Google Scholar
  76. Scudlark, J. R., Conko, K. M. and Church, T. M., 1993, ‘The Wet Deposition of Trace Elements on Delmarva and Their Utility as Emission Source Indicators’, Chesapeake Bay Research and Monitoring Division, Report CBRM-AD-94-3, Annapolis, MD, 80 pp.Google Scholar
  77. Scudlark, J. R., Conko, K. M. and Church, T. M.: 1994, ‘Atmospheric wet deposition of trace elements to Chesapeake Bay: CBAD Study year 1 results’, Atmos. Environ. 28, 1487.Google Scholar
  78. Smith, W. H. and Siccama, T. G.: 1981, ‘The Hubbard Brook ecosystem study: Biogeochemistry of lead in the northern hardwood forest’, J. Environ. Qual. 10, 323.Google Scholar
  79. Stumm, W. and Morgan, J. J.: 1981, Aquatic Chemistry, an Introduction Emphasizing Chemical Equilibria in Natural Waters, Wiley-Interscience, New York, 780 pp.Google Scholar
  80. Sverdrup, H. U.: 1990, The Kinetics of Base Cation Release Due to Chemical Weathering, Lund University Press, Lund, pp. 246.Google Scholar
  81. Tramontano, J. M., Scudlark, J. R. and Church, T. M.: 1987, ‘A method for the collection, handling and analysis of trace metals in precipitation’, Environ. Sci. and Tech. 21, 749.Google Scholar
  82. Turekian, K. K. and Wedepohl, K. H.: 1961, ‘Distribution of the elements in some major units of the earth’s crust’, Geolog. Soc. Am. Bull. 72, 175.Google Scholar
  83. Ukonmaanaho, L., Starr, M., Mannio, J. and Ruoho-Airola, T.: 2001, ‘Heavy metal budgets for two headwater forested catchments in background areas of Finland’, Environ. Pollut. 114, 63.PubMedGoogle Scholar
  84. Vossler, T. L., Lewis, C. W., Stevens, R. K., Dzubay, T. G., Gordon, G. E., Tuncel, S. G., Russwurm, G. M. and Keeler, G. J.: 1989, ‘Composition and origin of summertime air pollutants at Deep Creek Lake, Maryland’, Atmos. Environ. 23, 1535.Google Scholar
  85. Wollast, R. and Chou, L.: 1985, ‘Kinetic study of the dissolution of albite with a continuous flow-through fluidized bed reactor’, in J. I. Drever (ed.), The Chemistry of Weathering, D. Reidel Publishing Company, Dordrecht, The Netherlands, pp. 75–76.Google Scholar
  86. Wu, Z. Y., Han, M., Lin, Z. C. and Ondov, J. M.: 1994, ‘Chesapeake Bay Atmospheric Deposition Study, Year 1: Sources and dry deposition of selected elements in aerosol particles’, Atmos. Environ. 28, 1471.Google Scholar
  87. Yang, J.-K., Barnett, M. O., Jardine, P. M., Basta, N. T. and Castrell, S. W.: 2002, ‘Adsorption, sequestration and bioaccessibility of As(V) in soils’, Environ. Sci. & Tech. 36, 4562.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Joseph R. Scudlark
    • 1
  • Karen C. Rice
    • 2
  • Kathryn M. Conko
    • 1
    • 3
  • Owen P. Bricker
    • 3
  • Thomas M. Church
    • 1
  1. 1.Graduate College of Marine StudiesUniversity of DelawareLewesU.S.A.
  2. 2.Water Resources DivisionU.S. Geological SurveyCharlottesvilleU.S.A.
  3. 3.Water Resources DivisionU.S. Geological SurveyRestonU.S.A.

Personalised recommendations