Water, Air, and Soil Pollution

, Volume 163, Issue 1–4, pp 19–32 | Cite as

Determination of Mercury Content in a Shallow Firn Core from Greenland by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

  • Jacqueline L. Mann
  • Stephen E. Long
  • Christopher A. Shuman
  • W. Robert Kelly
Article

Abstract

The total mercury content was determined in 6 cm sections of a shallow 7 m firn core and in surrounding surface snow from Summit, Greenland (elevation: 3238 m, 72.58N, 38.53W) collected in May 2001 by isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICP-MS). The focus of this research was to evaluate the capability of the ID-CV-ICP-MS technique for measuring trace levels of Hg typical of polar snow and firn. Highly enriched 201Hg isotopic spike is added to approximately 10 mL melted core and thoroughly mixed. The Hg2+ in the sample is reduced on line with tin(II) chloride (SnCl2) and the elemental Hg (Hg) vapor pre-concentrated onto gold gauze using a commercial amalgam system. The Hg is then thermally desorbed and introduced into a quadrupole ICP-MS. The blank-corrected Hg concentrations determined for all samples ranged from 0.25 to 1.74 ng/L (ppt) (average 0.59 ± 0.28 ng/L (1σ)) and fall within the range of those previously determined by Boutron et al. [Geophys. Res. Lett. 25, 1998, 3315–3318] (≤ 0.05–2.0 ng/L) for the Summit site. The average blank value was 0.19 ± 0.045 ng/L (n = 6, 1σ) and the method detection limit was 0.14 ng/L. The Hg values specifically for the firn core range from 0.25 to 0.87 ng/L (average 0.51 ± 0.13 ng/L (1σ)) and show both values declining with time and larger variability in concentration in the top 1.8 m.

Keywords

firn core Greenland isotope dilution mercury trace 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR): 1999, Toxicological Profile for Mercury, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 617 pp.Google Scholar
  2. Albert, M. R. and Shultz, E. F.: 2002, ‘Snow and firn properties and air-snow transport processes at Summit, Greenland’, Atmos. Environ. 36, 2789–2797.CrossRefGoogle Scholar
  3. Alley, R. B. and Anandarkrishnan, S.: 1995, ‘Variations in melt-layer frequency in the GISP2 ice core: Implications for Holocene summer temperatures in central Greenland’, Ann. Glaciol. 21, 64–70.Google Scholar
  4. Allibone, J., Fatemian, E. and Walker, P. J.: 1999, ‘Determination of mercury in potable water by ICP-MS using gold as a stabilising agent’, J. Anal. At. Spectrom. 14, 235–239.Google Scholar
  5. Al-Saleh, I. and Al-Doush, I.: 1998, ‘Survey of trace elements in household and bottled drinking water samples collected in Riyadh, Saudi Arabia’, Sci. Total Environ. 216, 181–192.PubMedGoogle Scholar
  6. Arctic Monitoring and Assessment Programme (AMAP): 1998, Assessment Report: Arctic Pollution Issues, Oslo, Norway, p. 860.Google Scholar
  7. Boutron, C. F., Vandal, G. M., Fitzgerald, W. F. and Ferrari, C. P.: 1998, ‘A forty year record of mercury in central Greenland snow’, Geophys. Res. Lett. 25, 3315–3318.Google Scholar
  8. British Petroleum (BP): 2003, ‘Statistical review of world energy’, 40 pp.Google Scholar
  9. Christopher, S. J., Long, S. E., Rearick, M. S. and Fassett, J. D.: 2001, ‘Development of isotope dilution cold vapor inductively coupled plasma mass spectrometry and its application to the certification of mercury in NIST standard reference materials’, Anal. Chem. 73, 2190–2199.PubMedGoogle Scholar
  10. De la Riva, B. S. V., Costa-Fernandez, J. M., Jin, W.J., Pereiro, R. and Sanz-Medel, A.: 2002, ‘Determination of trace levels of mercury in water samples based on room temperature phosphorescence energy transfer’, Anal. Chim. Acta 21775, 1–8.Google Scholar
  11. De Wuilloud, J. C. A., Wuilloud, R. G., Silva, M. F., Olsina, R. A. and Martinez, L. D.: 2002, ‘Sensitive determination of mercury in tap water by cloud point extraction pre-concentration and flow injection-cold vapor-inductively coupled plasma optical emission spectrometry’, Spectrochim. Acta Part B 57, 365–375.Google Scholar
  12. Dommergue, A., Ferrari, C. P. and Boutron, C. F.: 2003, ‘First investigation of an original device dedicated to the determination of gaseous mercury in interstitial air and snow’, Anal. Bioanal. Chem. 375, 106–111.PubMedGoogle Scholar
  13. Douglas, T. A. and Sturm, M.: 2004, ‘Artic haze, mercury and the chemical composition of snow across northwestern Alaska’, Atmos. Environ. 38, 805–820.Google Scholar
  14. Engstrom, D. R. and Swain, E. D.: 1997, ‘Recent declines in atmospheric mercury deposition in the upper midwest’, Environ. Sci. Tech. 31, 960–967.Google Scholar
  15. Environmental Protection Agency (EPA): 1997, ‘Mercury report to congress (EPA 452/R-97-0003)’, 2000 pp.Google Scholar
  16. Ferrari, C. P., Moreau, A. L. and Boutron, C. F.: 2000, ‘Clean conditions for the determination of ultra-low levels of mercury in ice and snow samples’, Fres. J. Anal. Chem. 366, 433–437.Google Scholar
  17. Ferrari, C. P., Dommergue, A., Veysseyre, A., Planchon, F. and Boutron, C. F.: 2002, ‘Mercury speciation in the French seasonal snow cover’, Sci. Total Environ. 287, 61–69.PubMedGoogle Scholar
  18. Fischer, H., Wagenbach, D. and Kipfstuhl, J.: 1998b, ‘Sulfate and nitrate firn concentrations on the Greenland Ice Sheet, 2, temporal anthropogenic deposition changes’, J. Geophys. Res. 103(D17), 21,935–21,942.Google Scholar
  19. GUM: 1995, Guide to the Expression of Uncertainty in Measurement 1995, ISBN 92-67-10188-9, 1st edn., ISO, Geneva, Switzerland.Google Scholar
  20. Kelly, W. R., Long, S. E. and Mann, J. L.: 2003, ‘Determination of mercury in SRM crude oils and refined products by isotope dilution cold vapor ICP-MS using closed-system combustion’, Anal. Bioanal. Chem. 376, 753–758.PubMedGoogle Scholar
  21. Kemp, R. J., Schroeder, W. H. and Steffen, W. H.: 2000, ‘Real-time (in situ) observations of mercury air-surface interactions during Alert 2000’, Eos Trans. AGU 81.Google Scholar
  22. Lamborg, C. H., Fitzgerald, W. F., O’Donnell, J. and Torgersen, T.: 2002, ‘A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients’, Geochim. et Cosmochim. Acta 66, 1105–1118.Google Scholar
  23. Lindberg, S. E., Brooks, S., Lin, C. J., Scott, K. J., Landis, M. S., Stevens, R. K., Goodsite, M. and Richter, A.: 2002, ‘Dynamic oxidation of gaseous mercury in the arctic troposphere at polar sunrise’, Environ. Sci. Tech. 36, 1245–1256.Google Scholar
  24. Long, S. E. and Kelly, W. R.: 2002, ‘Determination of mercury in coal by isotope dilution cold-vapor generation inductively coupled plasma mass spectrometry’, Anal. Chem. 74, 1477–1483.PubMedGoogle Scholar
  25. Lu, J. Y., Schroeder, W. H., Barrie, L. A., Steffen, A., Welch, H. E., Martin, K., Lockhart, L., Hunt, R. V., Boila, G. and Richter, A.: 2001, ‘Magnification of atmospheric mercury deposition to polar regions in springtime: The link to tropospheric ozone depletion chemistry’, Geophys. Res. Lett. 28, 3219–3222.Google Scholar
  26. Manganiello, L., Rios, A. and Valcarcel, M.: 2002, ‘A method for screening total mercury in water using a flow injection system with piezoelectric detection’, Anal. Chem. 74, 921–925.PubMedGoogle Scholar
  27. Mann, J. L., Long, S. E. and Kelly, W. R.: 2003, ‘Direct determination of mercury at picomole/L levels in bottled water by isotope dilution cold-vapor generation inductively coupled plasma mass spectrometry’, J. Anal At. Spectrom. 18, 1293–1296.Google Scholar
  28. Manzoori, J. L., Sorouraddin, M. H. and Haji Shabani, A. M.: 1998, ‘Determination of mercury by cold vapour atomic adsorption spectrometry after preconcentration with dithizone immobilized on surfactant-coated alumina’, J. Anal At. Spectrom. 13, 305–308.Google Scholar
  29. Misund, A., Frengstad, B., Siewers, U. and Reimann, C.: 1999, ‘Variation of 66 elements in European bottled mineral waters’, Sci. Total Environ. 243/244, 21–41.Google Scholar
  30. National Research Council (NRC): 2000, Toxicological Effects of Methylmercury, National Academy of Sciences, Washington, DC, USA, 344 pp.Google Scholar
  31. Patris, N., Delmas, R. J., Legrand, M., De Angelis, M., Ferron, F. A., Stievenard, M. and Jouzel, J.: 2002, ‘First sulfur isotope measurements in central Greenland ice cores along the preindustrial and industrial periods’, J. Geophys. Res. 107, ACH 6-1–ACH 6-13.Google Scholar
  32. Pirrone, N., Keeler, G. J. and Nriagu, J. O.: 1996, ‘Regional differences in worldwide emissions of mercury to the atmosphere’, Atmos. Environ. 30, 2981–2987.Google Scholar
  33. Schroeder, W. H., Anlauf, K. G. and Barrie, L. A.: 1998, ‘Arctic springtime depletion of Mercury’, Nature 394, 331–332.Google Scholar
  34. Schuster, P. F., Krabbenhoft, D. P., Naftz, D. L., Cecil, L. D., Olson, M. L., Dewild, J. F., Susong, D. D., Green, J. R. and Abbott, M. L.: 2002, ‘Atmospheric mercury deposition during the last 270 years: A glacial ice core record of natural and anthropogenic sources’, Environ. Sci. Tech. 36, 2303–2310.Google Scholar
  35. Shanley, J. B., Schuster, P. F., Reddy, M. M., Roth, D. A., Taylor, H. E. and Aiken, G. R.: 2002, ‘Mercury on the move during snowmelt in Vermont’, EOS Trans. Am. Geophys. Union 83, 47–48.Google Scholar
  36. Shuman, C. A., Alley, R. B., Anandakrichnan, S., White, J. W. C., Grootes, P. M. and Stearn, C. R.: 1995, ‘Temperature and accumulation at the Greenland Summit: Comparison of high-resolution isotope profiles and satellite passive microwave brightness temperature trends’, J. Geophys. Res. 100, 9165–9177.Google Scholar
  37. Shuman, C. A., Alley, R. B., Fahnestock, M. A., Bindschadler, R. A., White, J. W. C., Winterle, J. and McConnell, J. R.: 1998, ‘Temperature history and accumulation timing for the snowpack at GISP2, central Greenland’, J. Glaciol. 44, 21–30.Google Scholar
  38. Steffen, A., Schroeder, W., Bottenheim, J., Narayan, J. and Fuentes, J. D.: 2002, ‘Atmospheric mercury concentrations: Measurements and profiles near snow and ice surfaces in the Canadian Arctic during ALERT 2000’, Atmos. Environ. 36, 2653–2661.Google Scholar
  39. United Nations Environment Programme (UNEP): 2002, Global Mercury Assessment, Geneva, Switzerland, 270 p.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Jacqueline L. Mann
    • 1
    • 1
  • Stephen E. Long
    • 1
  • Christopher A. Shuman
    • 2
  • W. Robert Kelly
    • 1
  1. 1.Analytical Chemistry DivisionChemical Science and Technology Laboratory, National Institute of Standards and TechnologyGaithersburgU.S.A.
  2. 2.Oceans and Ice Branch, Laboratory for Hydrospheric ProcessesNASA Goddard Space Flight CenterGreenbeltU.S.A.

Personalised recommendations