Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Factors Affecting the Fate of Ciprofloxacin in Aquatic Field Systems

Abstract

Ciprofloxacin (cipro) is a broad-spectrum antibiotic used in human and veterinary medicine that is readily transported into the environment via domestic wastewaters and through direct runoff. Although factors governing cipro fate are becoming understood, an integrated evaluation of disappearance mechanisms in aquatic systems has not been performed. Here we examined cipro disappearance rate in surface waters using both laboratory and field systems under different light, and dissolved (DOC) and particulate organic carbon (POC) conditions to determine when photodegradation versus adsorption dominates cipro fate. Initial laboratory experiments showed that cipro rapidly photodegraded (t1/2 ∼ 1.5 h) with numerous photodegradation products being noted when POC levels were low. However, even moderate water column POC levels resulted in reduced photodegradation (no breakdown products detected) and soluble cipro disappearance rates were accelerated. 14C-ciprofloxacin studies confirmed significant adsorption onto aquatic POC (KOC values of 13,900 to 20,500 L/kg at neutral pH). In contrast, a follow-up mesocosm-scale field study using low POC water showed that photodegradation could also dominate cipro fate. In conclusion, both adsorption and photodegradation strongly influence cipro fate in aquatic systems, although the dominant mechanism appears to depend upon the ambient POC level.

This is a preview of subscription content, log in to check access.

References

  1. Alonso, A., Sanchez, P. and Martinez, J. L.: 2001, ‘Environmental selection of antibiotic resistance genes’, Environ. Microbiol. 3, 1–9.

  2. APHA, AWWA and WEF.: 1999, Standard Methods for the Examination of Water and Wastewater, 20th edition. APHA, Washington, DC.

  3. Araki, T. and Kitaoka, H.: 1998, ‘ESR detection of free radical and active oxygen species generated during photolysis of fluoroquinolones’, Chem. Pharm. Bull. 46, 1021–1026.

  4. Burhenne, J., Ludwig, M., Nicoloudis, P. and Spiteller, M.: 1997, ‘Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. Part 1. Primary photodegradation products and half-lives’, Environ. Sci. Pollut. Res. Int. 4, 10–15.

  5. Burhenne, J., Ludwig, M. and Spiteller, M.: 1997, ‘Phototlytic degradation of fluoroquinolone carboxylic acids in aqueous solution. Part II: Isolation and structural elucidation of polar photometabolites’, Environ. Sci. Pollut. Res. Int. 4, 61–67.

  6. Ensz, A. P., Knapp, C. W. and Graham, D. W.: 2003, ‘Influence of autochthonous dissolved organic carbon and nutrient limitation on alachlor biotransformation in aerobic aquatic system’, Environ. Sci.Technol. 37, 4157–4162.

  7. Gau, W., Kurz, J., Petersen, U., Ploschke, H. J. and Wuensche, C.: 1986, ‘Isolation and structural elucidation of urinary metabolites of ciprofloxacin’, Arzneim.-Forsch. Drug Res. 36, 1545–1549.

  8. Golet, E. M., Xifra, I., Siegrist, H., Alder, A. C. and Giger, W.: 2003, ‘Environmental exposure of assessment of fluoroquinolone antibacterial agents from sewage to soil’, Environ, Sci. Technol. 37, 3243–3249.

  9. Graham, D. W., Miley, M. K., deNoyelles, F., Smith, V. H., Thurman, E. M. and Carter, R.: 2000, ‘Alachlor transformation patterns in aquatic field mesocosms under variable oxygen and nutrient conditions’, Wat. Res. 34, 4054–4062.

  10. Halling-Sorensen, B., Nors Nielsen, S., Lanzky, P. F., Ingerslev, F., Holten Lutzhoft, H. C. and Jorgensen, S. E.: 1998, ‘Occurrence, fate and effects of pharmaceutical substances in the environment – A review’, Chemosphere 36, 357–393.

  11. Hartmann, A., Alder, A. C., Koller, T. and Widmer, R. M.: 1998, ‘Identification of fluoroquinolone antibiotics as the main source of umuc genotoxicity in native hospital wastewater’, Environ. Toxicol. Chem. 17, 377–382.

  12. Hidalgo, M. E., Pessao, C., Fernández, E. and Cárdenas, A. M.: 1993, ‘Comparative determination of photodegradation kinetics of quinolones’, J. Photochem. Photobio. A: Chem. 73, 135–138.

  13. Kidwai, M., Misra, P. and Kumar, R.: 1998, ‘The fluorinated quinolones’, Curr. Pharm. Design 4, 101–118.

  14. Kirk, J. T. O.: 1994, Light & Photosynthesis in Aquatic Systems, 2nd edn., Cambridge University Press, Cambridge, U.K.

  15. Lam, M. W., Tantuco, K. and Mabury, S. A.: 2003, ‘PhotoFate: A new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters’, Environ. Sci. Technol. 37, 899–907.

  16. Mella, M., Fasani, E. and Albini, A.: 2001, ‘Photochemistry of 1-Cyclopropyl-6-fluoro-1,4-dihydro-4oxo-7-(piperazin-1-yl)quinoline-3-carboxylic 1-Cyclopropyl-6-fluoro-1,4-dihydro-4oxo-7-(piperazin-1-yl)quinoline-3-carboxylic Acid (=Ciprofloxacin) in aqueous solutions’, Helv. Chim. Acta 54, 2508–2519.

  17. Nowara, A., Burhenne, J. and Spiteller, M.: 1997, ‘Binding of fluoroquinolonecarboxylic acid derivatives to clay minerals’, J. Agric. Food Chem. 45, 1459–1463.

  18. Nusch, E. A.: 1980, ‘Comparison of different methods for chlorophyll and pheopigment determination’, Advan. Limnol. 14, 14–36.

  19. Parshikov, I. A., Heinze, T. M., Moody, J. D., Freeman, J. P., Williams, A. J. and Sutherland, J. B.: 2001, ‘The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin’, Appl. Micro. Biotech. 56, 474–477.

  20. Prepas, E. E. and Rigler, F. H.: 1982, ‘Improvements in quantifying the phosphorus concentration in lake water’, Can. J. Fish. Aquat. Sci. 39, 822–829.

  21. Schmitt-Kopplin, P., Burhenne, J., Freitag, D., Spiteller, M. and Kettrup, A.: 1999, ‘Development of capillary electrophoresis methods for the analysis of fluoroquinolones and application to the study of the influence of humic substances on their photodegradation in aqueous phase’, J. Chromatogr. A 837, 253–265.

  22. Solorzano, L. and Sharp, J. H.: 1980, ‘Determination of total dissolved nitrogen in natural waters’, Limnol. Oceanog. 25 (4) 751–754.

  23. SPSS Inc.: 1998, SPSS Reference Guide. SPSS Inc., Chicago, IL.

  24. Tolls, J.: 2001, ‘Sorption of veterinary pharmaceuticals in soils: A review’, Environ. Sci. Technol. 35, 3397–3406.

  25. Torniainen, K., Askolin, C.-P. and Mattinen, J.: 1997, ‘Isolation and structure elucidation of an intermediate in the photodegradation of ciprofloxacin’, J. Pharm. Biomed. Anal. 16, 439–445.

  26. Torniainen, K., Mattinen, J., Askolin, C.-P. and Tammilehto, S.: 1997, ‘Structure elucidation of a photodegradation product of ciprofloxacin’, J. Pharm. Biomed. Anal. 15, 887–894.

  27. Tornianen, K., Tammilehto, S. and Ulvi, V.: 1996, ‘The effect of pH, buffer type and drug concentration on the photochemistry of ciprofloxacin’, Int. J. Pharm. 132, 53–61.

  28. Wetzstein, H.-G., Stadler, M., Tichy, H.-V., Dalhoff, A. and Karl, W.: 1999, ‘Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum’, Appl. Environ. Microbiol. 65, 1556–1563.

  29. Yoshida, Y., Sato, E. and Moroi, R.: 1993, ‘Photodegradation products of levofloxacin in aqueous solutions’, Arzneim.-Forsch. Drug Res. 42, 601–606.

Download references

Author information

Correspondence to D. W. Graham.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cardoza, L.A., Knapp, C.W., Larive, C.K. et al. Factors Affecting the Fate of Ciprofloxacin in Aquatic Field Systems. Water Air Soil Pollut 161, 383–398 (2005). https://doi.org/10.1007/s11270-005-5550-6

Download citation

Keywords

  • aquatic systems
  • ciprofloxacin
  • field mesocosm
  • fluoroquinolone antibiotics
  • particulate organic carbon
  • photodegradation