Water, Air, and Soil Pollution

, Volume 165, Issue 1–4, pp 13–35 | Cite as

Sources of Nitrate in Snowmelt Discharge: Evidence From Water Chemistry and Stable Isotopes of Nitrate

  • Kathryn B. Piatek
  • Myron J. Mitchell
  • Steven R. Silva
  • Carol Kendall


To determine whether NO3 concentration pulses in surface water in early spring snowmelt discharge are due to atmospheric NO3, we analyzed stream δ15N-NO3 and δ18O-NO3 values between February and June of 2001 and 2002 and compared them to those of throughfall, bulk precipitation, snow, and groundwater. Stream total Al, DOC and Si concentrations were used to indicate preferential water flow through the forest floor, mineral soil, and ground water. The study was conducted in a 135-ha subcatchment of the Arbutus Watershed in the Huntington Wildlife Forest in the Adirondack Region of New York State, U.S.A. Stream discharge in 2001 increased from 0.6 before to 32.4 mm day−1 during snowmelt, and element concentrations increased from 33 to 71 μmol L−1 for NO3, 3 to 9 μmol L−1 for total Al, and 330 to 570 μmol L−1 for DOC. Discharge in 2002 was variable, with a maximum of 30 mm day−1 during snowmelt. The highest NO3, Al, and DOC concentrations were 52, 10, and 630 μmol L−1, respectively, and dissolved Si decreased from 148 μmol L−1 before to 96 μmol L−1 during snowmelt. Values of δ15N and δ18O of NO3 in stream water were similar in both years. Stream water, atmospherically-derived solutions, and groundwaters had overlapping δ15N-NO3 values. In stream and ground water, δ18O-NO3 values ranged from +5.9 to +12.9‰ and were significantly lower than the +58.3 to +78.7‰ values in atmospheric solutions. Values of δ18O-NO3 indicating nitrification, increase in Al and DOC, and decrease in dissolved Si concentrations indicating water flow through the soil suggested a dilution of groundwater NO3 by increasing contributions of forest floor and mineral soil NO3 during snowmelt.


natural abundance isotopes nitrate pulses nitrate sources northern hardwood forest N–saturation snowmelt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aber, J. D., Nadelhoffer, K. J., Steudler, P. and Mellilo, M. J.: 1989, ‘Nitrogen saturation in northern hardwood forest ecosystems’, BioScience 39, 378–386.Google Scholar
  2. Aber, J. D., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L. and Fernandez, I.: 1998, ‘Nitrogen saturation in temperate forest ecosystems: hypotheses revisited’, BioScience 48, 921–934.Google Scholar
  3. Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M.-L., Magill, A. H., Martin, M. E., Hallett, R. A. and Stoddard, J. L.: 2003, ‘Is nitrogen deposition altering the nitrogen status of northeastern forests? BioScience 53, 375–389.Google Scholar
  4. Agren, G. and Bosatta, E.: 1988, ‘Nitrogen saturation in terrestrial ecosystems’, Environ. Pollut. 54, 185–197.PubMedGoogle Scholar
  5. Baron, J. S. and Campbell, D. H.: 1997, ‘Nitrogen fluxes in high elevation Colorado Rocky Mountain Basin’, Hydrol. Proc. 11, 783–799.CrossRefGoogle Scholar
  6. Bischoff, J. M., Bukaveckas, P., Mitchell, M. J. and Hurd, T.: 2001, ‘Nitrogen storage and cycling of a forested wetland: implications for watershed N processing’, Water, Air, and Soil Pollut. 128, 97–114.Google Scholar
  7. Bottomley, D. J., Craig, D. and Johnston, L. M.: 1986, ‘Oxygen-18 studies of snowmelt runoff in a small Precambrian shield watershed: implications for streamwater acidification in acid-sensitive terrain’, J. Hydrol. 88, 21–234.CrossRefGoogle Scholar
  8. Boyer, E. W., Hornberger, G. M., Bencala, K. E. and McKnight, D. M.: 1997, ‘Response characteristics of DOC flushing in an alpine catchment’, Hydrol. Process. 11, 1635–1647.CrossRefGoogle Scholar
  9. Boyer, E. W., Hornberger, G. M., Bencala, K. E. and McKnight, D. M.: 1997.: 2000, ‘Effects of asynchronous snowmelt on flushing of dissolved organic carbon: a mixing model approach’, Hydrol. Process. 14, 3291–3308.CrossRefGoogle Scholar
  10. Brooks, P. D. and Williams, M. W.: 1999, ‘Snowpack controls on nitrogen cycling and export seasonally snow-covered catchments’, Hydrol. Process. 13, 2177–2190.CrossRefGoogle Scholar
  11. Burns, D. A. and Kendall, C.: 2002, ‘Analysis of δ15N and δ18O to differentiate NO3- sources in runoff at two watersheds in the Catskill Mountains of New York’, Water Res. Res. 38(9), 1–11.CrossRefGoogle Scholar
  12. Campbell, D. H., Kendall, C., Chang, C. C. Y., Silva, S. R. and Tonnessen, K. A.: 2002, ‘Pathways for nitrate release from an alpine watershed: determination using δ15N and δ18O’, Water Res. Res. 38(10), 1–9.CrossRefGoogle Scholar
  13. Chang, C. C. Y., Langston, J., Riggs, M., Campbell, D. H., Silva, S. R. and Kendall C.: 1999, ‘A method for nitrate collection for δ15N and δ18O analysis from waters with low nitrate concentrations’, Can. J. Fish. & Aquatic Sci. 56, 1–9.Google Scholar
  14. Christopher, S., Page, B., Campbell, J. and Mitchell, M. J.: 2005, ‘Contrasting stream water chemistry in two adjacent catchments: The role of differences in soil Ca and forest vegetation in affecting NO3- in surface waters’, Global Change Biol. In review.Google Scholar
  15. Cronan, C. S. and Aiken, G. R.: 1985, ‘Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York’, Geochim. Cosmochim. Acta 49, 1697–1705.CrossRefGoogle Scholar
  16. Driscoll, C. T., Baker, J. P., Bisogni, J. J. and Schofield.: 1984, ‘Aluminum speciation and equilibria in dilute acidic surface waters of the Adirondack region of New York State’, in O. P. Bricker and J. I. Teasley (eds), Geological aspects of acid deposition, Butterworth Publishers, pp. 55–74.Google Scholar
  17. Driscoll, C. T. and Van Dreason, R.: 1993, ‘Seasonal and long–term temporal patterns in the chemistry of Adirondack Lakes’, Water, Air, and Soil Pollut. 67, 319–344.Google Scholar
  18. Driscoll, C. T., Whitall, D., Aber, J. D., Boyer, E. W., Castro, M., Cronan, C., Goodale, C. L., Groffman, P. M., Hopkinson, C., Lambert, K., Lawrence, G. and Ollinger, S.: 2003, ‘Nitrogen pollution in the Northeastern United States: sources, effects, and management options’, BioScience 53, 357–374.Google Scholar
  19. Durka, W., Schulze, E.-D., Gebauer, G. and Vorkelius. S.: 1994, ‘Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements’, Nature 372: 765–767.CrossRefGoogle Scholar
  20. Emmett, B. A., Boxman, A. W., Bredemeier, M., Moldan, F., Gundersen, P. Kjønaas, O. J., Schleppi, P., Tietema, A. and Wright, R. F.: 1998, ‘Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX ecosystem-scale experiments’, Ecosystems 1, 352–360.CrossRefGoogle Scholar
  21. Fisher, D.: 1957, ‘Bedrock geology map of New York State’, NYS Museum Bulletin 22, 1–4 Albany, New York.Google Scholar
  22. Fitzhugh, R. D., Driscoll, C. T., Groffman, P. M., Tierney, G. L., Fahey, T. J. and Hardy, J. P.: 2001, ‘Effects of soil freezing disturbance on soil solution nitrogen, phosphorus and carbon chemistry in a northern hardwood ecosystem’, Biogeochem. 56, 215–238.CrossRefGoogle Scholar
  23. Fitzhugh, R. D., Likens, G. E., Driscoll, C. T., Mitchell, M. J., Groffman, P. M., Fahey,T. J. and Hardy, J. P.: 2003, ‘The role of soil freezing events in interannual patterns of stream chemistry at the Hubbard Brook Experimental Forest’, ES&T 37, 1575–1580.Google Scholar
  24. Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B. and Cosby, B. J.: 2003, ‘The Nitrogen Cascade’, BioScience 53, 341–356.Google Scholar
  25. Goodale, C. L., Aber, J. D. and Vitousek, P. M.: 2003, ‘An unexpected nitrate decline in New Hampshire streams’, Ecosystems 6, 75–86.CrossRefGoogle Scholar
  26. Gundersen, P., Emmett, B. A., Kjønaas, O. J., Koopmans, C. J. and Tietema, A.: 1998, ‘Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data’, For. Ecol. Manage. 101, 37–55.CrossRefGoogle Scholar
  27. Hazlett, P. W., Semkin, R. G. and Beall, F. D.: 2001, ‘Hydrologic pathways during snowmelt in first-order stream basins at the Turkey Lakes watershed’, Ecosystems 4, 527–535.CrossRefGoogle Scholar
  28. Hinton, M. J., Schiff, S. L. and English, M. C.: 1994, ‘Examining the contributions of glacial till water to storm runoff using two- and three-component hydrograph separations’, Water Res. Res. 30, 983–993.CrossRefGoogle Scholar
  29. Hornberger, G. M., Bencala, K. E. and McKnight, D. M.: 1994, ‘Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado’, Biogeochem. 25, 147–165.CrossRefGoogle Scholar
  30. Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., Downing, J. A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., Freney, J., Kudeyarov, V., Murdoch, P. and Zhu Z.-L.: 1996, ‘Regional nitrogen budgets and lotic N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences’, Biogeochem. 35, 75–139.Google Scholar
  31. Hurd, T. M., Raynal, D. J. and Schwintzer, C. R.: 2001, ‘Symbiotic N2 fixation of Alnus incana sprugosa in shrub wetlands of the Adirondack Mountains, New York, USA’, Oecologia 126, 94–103.CrossRefGoogle Scholar
  32. Inamdar, S. P., Christopher, S. F. and Mitchell, M. J.: 2004, ‘Export mechanisms for dissolved organic carbon and nitrate during storm events in a glaciated forested catchment in New York, USA’, Hydrol. Process. 18, 2651–2661.CrossRefGoogle Scholar
  33. Ito, M., Mitchell, M. J. and Driscoll, C. T.: 2002, ‘Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region, of New York’, Atmos. Envir. 36, 1051–1062.CrossRefGoogle Scholar
  34. Ito, M., Mitchell, M. J., Driscoll, C. T. and Roy, K. M.: 2005, ‘Nitrogen input-output budgets for lake-watersheds in the Adirondack region of New York’, Biogeochem. (in Press).Google Scholar
  35. Kendall, C., Campbell, D. H., Burns, D. A., Schanley, J. B., Silva, S. R. and Chang, C. C. Y.: 1995, ‘Tracing sources of nitrate in snowmelt runoff using the oxygen and nitrogen isotopic compositions of nitrate’, in Biogeochemistry of seasonally snow-covered catchments Proceedings of a Boulder Symposium, IAHS Publication No. 228, pp. 339–347.Google Scholar
  36. Kendall, C.: 1998, ‘Tracing nitrogen sources and cycling in catchments’, in C. Kendall and J. J. McDonnell (eds), Isotope Tracers in catchment hydrology, Elsevier Science, BV, pp. 519–576.Google Scholar
  37. Mayer, B., Bollwerk, S. M., Mansfeldt, T.,Hütter, B. and Veizer. J.: 2001, ‘The oxygen isotope composition of nitrate generated by nitrification in acid forest floors’, Geoch. Cosmochem. Acta 65, 2743–2756.CrossRefGoogle Scholar
  38. Mayer, B., Boyer, E. W., Goodale, C., Jaworski, N. A., van Breemen, N., Howarth, R. W., Seitzinger, S., Billen, G., Lajtha, K., Nadelhoffer, K., Van Dam, D., Hetling, L. J., Nosal, M. and Paustian, K.: 2002, ‘Sources of nitrate in rivers draining sixteen watersheds in the Northeastern U. S.: isotopic constraints’, Biogeochem. 57/58, 171–197.CrossRefGoogle Scholar
  39. McGlynn, B. L., McDonnell, J. J., Shanley, J. B. and Kendall C.: 1999, ‘Riparian zone flowpath dynamics during snowmelt in a small headwater catchment’, Journal of Hydrol. 222, 75–92.CrossRefGoogle Scholar
  40. McHale, M. R.: 1999, ‘Hydrologic controls of nitrogen cycling in an Adirondack Watershed’, Ph.D dissertation, College of Environmental Science and Forestry, State University of New York, Syracuse, New York, 230 pp.Google Scholar
  41. McHale, M. R., McDonnell, J. J., Mitchell, M. J. and Cirmo, C. P.: 2002, ‘A field based study of soil- and groundwater nitrate release in an Adirondack forested watershed’, Water Res. Res. 38, 1029–1038.CrossRefGoogle Scholar
  42. Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S. and Matzner, E.: 2001, ‘Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests’, Biogeochem. 52, 173–205.CrossRefGoogle Scholar
  43. Mitchell, M. J.: 2001, ‘Linkages of nitrate losses in watersheds to hydrological processes’, Hydrol. Proc. 15, 3305–3307.CrossRefGoogle Scholar
  44. Mitchell, M. J., Driscoll, C. T., Murdoch, P., Likens, G. E., Kahl J. S. and Pardo, L.: 1996a, ‘Climatic control of nitrate loss from forested watersheds in the northeast United States’, ES&T 30, 2609–2612.Google Scholar
  45. Mitchell, M. J., Raynal, D. J. and Driscoll, C. T.: 1996b, ‘Biogeochemistry of a forested watershed in the central Adirondack Mountains: temporal changes and mass balances’, Water, Air, and Soil Pollut.88, 355–369.Google Scholar
  46. Mitchell, M. J., McHale, P. J., Inamdar, S. and Raynal, D. J.: 2001, ‘Role of within–lake processes and hydrogeochemical changes over 16 years in a watershed in the Adirondack Mountains of New York State, USA’, Hydrol. Proc. 15, 1951–1965.CrossRefGoogle Scholar
  47. Mitchell, M. J., Driscoll, C. T., Inamdar, S., McGee, G., Mbila, M. and Raynal, D. J.: 2003, ‘Nitrogen biogeochemistry in the Adirondack Mountains of New York: hardwood ecosystems and associated surface waters’, Envir. Pollut. 123, 355–364.CrossRefGoogle Scholar
  48. Mulholland, P. J., Wilson, G. V. and Jardine, P. M.: 1990, ‘Hydrogeochemical response of a forested watershed to storms: Effects of preferential flow along shallow and deep pathways’, Water Res. Res. 26, 3021–3036.CrossRefGoogle Scholar
  49. Ohte, N., Sebestyen, S. D., Shanley, J. B., Doctor, D. H., Kendall, C., Wankel, S. D. and Boyer, E. W.: 2004, ‘Tracing sources of nitrate in snowmelt runoff using a high-resolution isotopic technique’, Geophys. Res. Lett. 31, LXXXXX.CrossRefGoogle Scholar
  50. Ollinger, S. V., Aber, J. D., Lovett, G. M., Millham, S. E. and Lathrop, R. G.: 1993, ‘A spatial model of atmospheric deposition in the northeastern U. S.’, Ecol. Applic. 3, 459–472.Google Scholar
  51. Pardo, L. H., Hemond, H. F., Montoya, J. P., Fahey, T. J. and Siccama, T. G.: 2003, ‘Long term patterns in forest floor nitrogen-15 natural abundance at Hubbard Brook, NH’, Soil Sci. Soc. Am. J. 65, 1279–1283.Google Scholar
  52. Pardo, L. H., Kendall, C., Pett-Ridge, J. and Chang, C. C. Y.: 2004, ‘Evaluating the source of streamwater nitrate using δ18O in nitrate in two watersheds in New Hampshire, USA’, Hydrol. Proc. (in press)Google Scholar
  53. Park, J. H., Mitchell, M. J., McHale, P. J., Christopher, S. F. and Myers, T. P.: 2003, ‘Interactive effects of changing climate and atmospheric deposition on N and S biogeochemistry in a forested watershed of the Adirondack Mountains, New York State’, Global Change Biol. 9, 1602–1619.CrossRefGoogle Scholar
  54. Rascher, C. M., Driscoll, C. T. and Peters, N. E.: 1987, ‘Concentration and flux of solutes from snow and forest floor during snowmelt in the West-Central Adirondack region of New York’, Biogeochem. 3, 209–224.Google Scholar
  55. Rock, L. and Mayer, B.: 2004, ‘Isotopic assessment of sources of surface water nitrtae within the Oldman River basin, southern Alberta, Canada’, Water, Air, Soil Pollut.: Focus 4, 545–562.Google Scholar
  56. Schleppi, P., Hagedorn, F. and Providoli I.: 2004, ‘Nitrate leaching from a mountain forest ecosystem with Gleysols subjected to experimentally increased N deposition’, Water, Air, Soil Pollut.: Focus 4, 453–467.Google Scholar
  57. Schaefer, D. A. and Driscoll, C. T.: 1993, ‘Identifying sources of snowmelt acidification with a watershed mixing model’, Water, Air, and Soil Pollut. 67, 345–365.Google Scholar
  58. Shanley, J. B., Kendall, C., Smith, T. E., Wolock, D. M. and McDonnell, J. J.: 2002, ‘Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA’, Hydrol. Process. 16, 589–609.CrossRefGoogle Scholar
  59. Shepard, J. P., Mitchell, M. J., Scott, T. J., Zhang, Y. M. and Raynal, D. J.: 1989, ‘Measurements of wet and dry deposition in a northern hardwood forest’, Water, Air, & Soil Pollut. 48, 225–238.Google Scholar
  60. Silva, S. R., Kendall, C., Wilkinson, D. H., Ziegler, A. C., Chang, C. C. Y. and Avanzino, R. J.: 2000, ‘A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios’, J. Hydrol. 228, 22–36.CrossRefGoogle Scholar
  61. Somers, R. C.: 1986, ‘Soil classification, genesis, morphology, and variability with the Central Adirondack Region of New York’, Ph.D Dissertation, College of Environmental Science and Forestry, State University of New York, Syracuse, New York, 746 pp.Google Scholar
  62. Spoelstra, J., Schiff, S. L., Elgood, R. J., Semkin, R. G. and Jeffries, D. S.: 2001, ‘Tracing the sources of exported nitrate in the Turkey Lakes Watershed using 15N14N and 18/16O isotopic ratios’, Ecosystems 4, 536–544.CrossRefGoogle Scholar
  63. Stoddard, J. L.: 1994, ‘Long-term changes in watershed retention of nitrogen: its causes in aquatic consequences’, in L. A. Baker (ed), Environmental chemistry of lakes and reservoirs advances in chemistry, American Chemical Society, Washington, DC, USA., pp. 223–284.Google Scholar
  64. Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H. and Tilman, D. G.: 1997, ‘Human alteration of the global nitrogen cycle: sources and consequences’, Ecol. Applic. 7, 737–750.Google Scholar
  65. Williams, M. W., Brooks, P. D., Mosier, A. and Tonnessen, K. A.: 1996, ‘Mineral nitrogen transformations in and under seasonal snow in a high–elevation catchment in the Rocky Mountains, United States’, Water Res. Res. 32, 3161–3171.CrossRefGoogle Scholar
  66. Zak, D. R., Groffman, P. M., Pregitzer, K. S., Christensen, S. and Tiedje, J. M.: 1990, ‘The vernal dam: Plant–microbe competition for nitrogen in northern hardwood forests’, Ecology 71, 651–656.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Kathryn B. Piatek
    • 1
  • Myron J. Mitchell
    • 2
  • Steven R. Silva
    • 3
  • Carol Kendall
    • 3
  1. 1.Division of ForestryWest Virginia UniversityMorgantownUSA
  2. 2.College of Environmental Sciences and ForestryState University of New YorkSyracuseUSA
  3. 3.U.S. Geological SurveyMenlo ParkUSA

Personalised recommendations