Advertisement

Water, Air, and Soil Pollution

, Volume 165, Issue 1–4, pp 3–11 | Cite as

1-Octanol/Water Partition Coefficients of 5 Pharmaceuticals from Human Medical Care: Carbamazepine, Clofibric Acid, Diclofenac, Ibuprofen, and Propyphenazone

  • Traugott ScheyttEmail author
  • Petra Mersmann
  • Ralph Lindstädt
  • Thomas Heberer
Article

Abstract

Laboratory studies were conducted to characterize the 1-octanol/water partition coefficients of pharmaceutically active substances carbamazepine, clofibric acid, diclofenac, ibuprofen, and propyphenazone. Partition coefficients determined by shake flask experiments (OECD guideline 107) varied between log KOW 1.51 for carbamazepine, 2.88 for clofibric acid, 1.90 for diclofenac, 2.48 for ibuprofen, and 2.02 for propyphenazone. Comparison of these values with the literature values revealed rather significant differences for most of the compounds. The partitioning coefficients of the acidic compounds diclofenac and ibuprofen agreed much better with sorption and mobility data from previously conducted experiments, whereas KOW values for carbamazepine were lower and for clofibric acid higher than expected from experiments. Only KOW values for propyphenazone were in the same range as reported in the literature and expected from column experiments.

Keywords

KOW mobility drugs KOC sorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avdeef, A., Box, K. J., Comer, J. E. A., Hibbert, C. and Tam, K. Y. 1998, ‘pH-metric logP10. Determination of liposomal membrane-water partitioning coefficients of ionizable drugs’, Pharmaceutical Res. 15(2), 209–215.CrossRefGoogle Scholar
  2. Buser, H.-R., Poiger, T. and Müller, M. D.: 1999, ‘Occurrence and environmental behaviour of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater’, Environ. Sci. Technol. 33, 2529–2535.CrossRefGoogle Scholar
  3. Fini, A., Fazio, G. and Rabasco, A. M. 1993, ‘1-octanol/water partitioning of Diclofenac salts’, Acta Technol. Legis Med. 4, 33–34.Google Scholar
  4. Hanna, M., de Biasi, V., Bond, B., Salter, C., Hutt, A. J. and Camilleri, P. 1998, ‘Estimation of the partitioning characteristics of drugs: A comparison of a large and diverse drug series utilizing chromatographic and electrophoretic methodology’, Anal. Chem. 70, 2092–2099.CrossRefPubMedGoogle Scholar
  5. Hansch, C., Hoekmann, D., Leo, A., Zhang, L. T. and Li, P. 1995, ‘The expanding role of quantitative structures-activity-relationships (QSAR) in toxicology’, Toxicol. Lett. 79(1–3), 45–53.CrossRefPubMedGoogle Scholar
  6. Heberer, Th. 2002, ‘Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data’, Toxicol. Lett. 131, 5–17.CrossRefPubMedGoogle Scholar
  7. Heberer, Th., Schmidt-Bäumler, K. and Stan, H.-J.: 1998, ‘Occurrence and distribution of organic contaminants in the aquatic system in Berlin. Part I: Drug residues and other polar contaminants in Berlin surface and groundwater’, Acta hydrochim. hydrobiol. 26(5), 272–278.CrossRefGoogle Scholar
  8. Henschel, K.-P., Wenzel, A., Diedrich, M. and Fliedner, A.: 1997, ‘Environmental hazard assessment of Pharmaceuticals’, Regulatory Toxicology and Pharmacology 25, 220–225.CrossRefPubMedGoogle Scholar
  9. Holm, J. V., Rügge, K., Bjerg, P. L. and Christensen, T. H.: 1995, ‘Occurrence and distribution of pharmaceutical compounds in the groundwater downgradient of a landfill (Grindsted, Denmark)’, Environ. Sci. Technol. 29, 1415–1420.CrossRefGoogle Scholar
  10. Karickhoff, S. W., Brown, D. S. and Scott, T. A. 1979, ‘Sorption of hydrophobic pollutants on natural sediments’, Wat. Res. 13, 241–248.CrossRefGoogle Scholar
  11. Lützhoft, H.-C. H., Vaes, W. H. J., Freidig, A. P., Halling-Sorensen, B. and Hermens, J. L. M.: 2000a, ‘Influence of pH and other modifying factors on the distribution of 4-Quinolones to solid phases and humic acids studied by ‘Negligible-Depletion’ SPME-HPLC’, Env. Sci. Technol. 34, 4989–4994.CrossRefGoogle Scholar
  12. Lützhoft, H.-C. H., Vaes, W. H. J., Freidig, A. P., Halling-Sorensen, B. and Hermens, J. L. M.: 2000b, ‘1-Octanol/water distribution coefficient of oxolinic acid: Influence of pH and its relation to the interaction with dissolved organic carbon’, Chemosphere 40, 759–765.CrossRefGoogle Scholar
  13. Mersmann, P., Scheytt, T. and Heberer, Th.: 2002, ‘Column experiments on the transport behavior of pharmaceutically active substances in the saturated zone’, Acta hydrochim. hydrobiol. 30, 275–284.CrossRefGoogle Scholar
  14. Meylan, W. M., Howard, P. H. and Boethling, R. S.: 1996, ‘Improved method for estimating water solubility from octanol water partition coefficient’, Environ. Toxicol. Chem. 15(2), 100–106.CrossRefGoogle Scholar
  15. Merck Index: 2001, An Encyclopedia of Chemicals, Drugs, and Biologicals, 13th edn., Merck Research Laboratories, Whitehouse Station, NJ.Google Scholar
  16. Mutschler, E., Geisslinger, G., Kroemer, H. K. and Schäfer-Korting, M.: 2001, Arzneimittelwirkungen. — Lehrbuch der Pharmakologie und Toxikologie (Textbook of Pharmacology and Toxicology), Wissenschaftliche Verlagsgesellschaft, Stuttgart, 8th edn, pp. 1211.Google Scholar
  17. Neely, W. B. and Blau, G. E.: 1985, Environmental Exposure from Chemicals, CRC Press, Boca Raton, FL, USA.Google Scholar
  18. OECD, Organisation for Economic Cooperation and Development: 1995, Guideline for the Testing of Chemicals 107 — Partition Coefficient (n-Octanol/water): Shake Flask Method, Paris.Google Scholar
  19. Rafols, C., Roses, M. and Bosch, E.: 1997, ‘A comparison between different approaches to estimate the aqueous pKa of several non-steroidal anti-inflammatory drugs’, Analytica Chim. Acta 338, 127–134.CrossRefGoogle Scholar
  20. Reddersen, K. and Heberer, Th.: 2003, ‘Multi-methods for the trace-level determination of pharmaceutical residues in sewage, surface and ground water samples applying GC-MS’, J. Sep. Sci. 26, 1443–1450.CrossRefGoogle Scholar
  21. Scheytt, T., Mersmann, P., Leidig, M., Pekdeger, A. and Heberer, Th.: 2004, ‘Transport of pharmaceutically active compounds in saturated laboratory columns’, Ground Water 42, 767–773.PubMedGoogle Scholar
  22. Scheytt, T., Mersmann, P., Lindstädt, R. and Heberer, Th.: in press, ‘Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen in sandy sediments’, Chemosphere.Google Scholar
  23. Scheytt, T.: 2002, ‘Pharmaceuticals in groundwater — Input, degradation, and transport (In German)’, Habilitation Thesis, Technical University Berlin, pp. 148Google Scholar
  24. Scheytt, T., Grams, S. and Fell, H.: 1998, ‘Occurrence and behaviour of drugs in groundwater’, in J.V. Brahana, Y. Eckstein, L. K. Ongley, R. Schneider and I. E. Moore (eds), IAH/AIH Proceedings Gambling with Groundwater — Physical, Chemical, and Biological Aspects of Aquifer-Stream Relations, Las Vegas, NV, USA, October 1998, pp. 13–18.Google Scholar
  25. Stuer-Lauridsen, F., Birkved, M., Hansen, L. P., Holten, Lützhøft, H.-C. and Halling-Sørensen, B.: 2000, ‘Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use’, Chemosphere 40, 783–793.CrossRefPubMedGoogle Scholar
  26. Syracuse Science Center: 2002, ‘Database of experimental octanol-water partition coefficients (Log P)’, http://esc-plaza.syrres.com/interkow/kowdemo.htmGoogle Scholar
  27. Ternes, T. A.: 1998, ‘Occurrence of drugs in German sewage treatment plants and rivers’, Wat. Res. 32(11), 3245–3260.CrossRefGoogle Scholar
  28. Tixier, C., Singer, H. P., Oellers, S. and Müller, S. R.: 2003, ‘Occurrence and fate of Carbamazepine, Clofibric acid, Diclofenac, Ibuprofen, Ketoprofen, and Naproxen in Surface waters’, Environ. Sci. Technol. 37(6), 1061–1068.CrossRefPubMedGoogle Scholar
  29. Yalkowsky, S. H. and Dannenfelser, R. M.: 1992, Aquasol Database of Aqueous Solubility. — Version 5, College of Pharmacy, University of Arizona, Tucson, AZ.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Traugott Scheytt
    • 1
    Email author
  • Petra Mersmann
    • 1
  • Ralph Lindstädt
    • 1
  • Thomas Heberer
    • 2
  1. 1.Technical University BerlinInstitute of Applied GeosciencesBerlinGermany
  2. 2.Federal Institute for Risk AssessmentBerlinGermany

Personalised recommendations