Advertisement

Water, Air, and Soil Pollution

, Volume 160, Issue 1–4, pp 271–291 | Cite as

Modelling the overland transport of lead deposited from the atmosphere in the elbe catchment over four decades (1958–1995)

  • A. Schulte-RentropEmail author
  • M. Costa-Cabral
  • R. Vink
Article

Abstract

The Neurotoxin lead has been emitted in large amounts into the environment over decades. To what extent this long-term pollution affects environmental systems is relatively unknown. Despite decreasing atmospheric pollution, soil and freshwater systems still indicate high lead concentrations. This study provides a preliminary estimation of annual overland lead fluxes originating from atmospheric pollution in the Elbe basin in Central Europe during the period 1958–1995. The transport into aquatic systems of lead originally deposited in the soil is assessed. Three pathways from rural areas into the river system were considered: erosion, direct runoff and direct atmospheric deposition. For this purpose, a modified mesoscale empirical–conceptual model for heavy-metal transport was applied. The results indicated that the total lead fluxes decreased after a peak in the 1970s. The emissions into the Elbe and its tributaries due to direct deposition showed a clear decline caused by decreasing atmospheric pollution since the 1970s. On the contrary, overland lead fluxes via erosion and direct runoff slightly increased. They were mostly influenced by the hydrometeorological and topographical conditions and less by the intensity of atmospheric input in a given year. Model results showed a steady background accumulation in the soils for the investigation period with a positive temporal and spatial correlation to atmospheric deposition. We conclude that lead-control policies were successful only to a certain degree. In order to reduce pollution by highly sorptive, particle-bound substances such as lead, effort should focus not only on minimizing atmospheric emissions, but also on minimizing soil erosion.

Keywords

atmospheric pollution direct atmospheric deposition direct runoff Elbe catchment erosion soil pollution lead long-term contamination modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alloway, B. J. (ed.): 1995, Heavy Metals in Soils, Blackie Academic and Professional Publishers, London, UK.Google Scholar
  2. Andreae, H.: 1993, ‘Verteilung von Schwermetallen in einem forstlich genutzten Wassereinzugsgebiet unter dem Einfluss saurer Deposition am Beispiel der Sösemulde (Westharz)’, Berichte des Forschungszentrums Waldökosysteme, Reihe A, Bd. 99, Göttingen.Google Scholar
  3. Bauer, J., Lehmann, R. and Hamm, A.: 1988, ‘PH-Wert-Veränderung an ungepufferten Seen und Fliessgewässern durch saure Deposition und ökologische Aspekte der Gewässerversauerung’, in Gewässerversauerung im nord- und nordostbayerischen Grundgebirge, Bayerische Landesanstalt für Wasserforschung München, München.Google Scholar
  4. Behrendt, H.: 1993, ‘Point and diffuse loads of selected pollutants in the River Rhine and its main tributaries’, RR-93-1, LLASA, Laxenburg, Austria.Google Scholar
  5. Behrendt, H., Huber, P., Kornmilch, M., Opitz, D., Schmoll, O., Scholz, G. and Uebe, R.: 2000, ‘Nutrient balances of German river basins’, Umweltbundesamt Texte 23-00, Berlin, 261 pp.Google Scholar
  6. Behrendt, H. and Opitz, D.: 2000, ‘Retention of nutrients in river systems: Dependence on specific runoff and hydraulic load’, Hydrobiologia 410, 111–122.Google Scholar
  7. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): 1997, Bodenübersichtskarte der Bundesrepublik Deutschland 1:1000 000: Karte mit Erläuterungen, Texlegende und Leitprofilen, BGR, Hannover.Google Scholar
  8. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit: 1999, BundesBodenschutz- und Altlastenverordnung (downloadable from: http://bundesrecht.juris.de/bundesrecht/bbodschv/).
  9. Chamberlain, A. V.: 1983, ‘Fallout of lead and uptake by crops’, Atmos. Environ. 17, 4.Google Scholar
  10. Costa-Cabral, M. C.: 1999, ‘The TUBES algorithm for the representation of advective transport in a two-dimensional discretized flow field’, Report No. 99-E-60, GKSS Research Centre Geesthacht, Geesthacht.Google Scholar
  11. Fahrenhorst, H.: 1993, ‘Retardation und Mobilität von Blei, Antimon und Arsen im Boden am Fallbeispiel von Schrotschiessplätzen’, Bodenökologie und Bodengenese 11, Fachgebiete Bodenkunde und Regionale Bodenkunde, Institut für Ökologie, Technische Universität Berlin, Selbstverlag, Berlin.Google Scholar
  12. Feser, F., Weisse, R. and Von Storch, H.: 2001, ‘Multi-decadal atmospheric modeling for Europe yields multi-purpose data’, EOS Trans. 82, 305–310.Google Scholar
  13. Hagner, C.: 2000, ‘European regulations to reduce lead emissions from automobiles – Did they have an economic impact on the German gasoline and automobile markets?’, Regional Environ. Change 1, 3–4, 135–152.Google Scholar
  14. Hagner, C.: 2002, ‘Regional and long-term patterns of lead concentrations in riverine, marine and terrestrial systems and humans in Northwest Europe’, Water Air Soil Pollut. 134, 1–39.Google Scholar
  15. Hoebel, C.: 1984, ‘Zum Schwermetallgehalt im Oekosystem der Deutschen Bucht, mit besonderer Berücksichtigung rezent mariner, benthischer Foraminiferen’’, Ph.D. Thesis, Department of Mathematics and Natural Sciences, University of Clausthal.Google Scholar
  16. Hong, S., Candelone, J.-P., Patterson, C. C. and Boutron, C. F.: 1994, ‘Greenland ice evidence of hemispheric lead pollution two millenia ago by Greek and Roman civilizations’, Science 265, 1841–1843.Google Scholar
  17. Kwadijk, J.: 1993, ‘The impact of climate change on the discharge of the River Rhine’, Ph.D. Thesis, University of Utrecht.Google Scholar
  18. Lovei, M.: 1997, ‘Phasing out lead from gasoline in central and eastern Europe’, World Bank Publication.Google Scholar
  19. Nriagu, J. O.: 1992, ‘The rise and fall of leaded gasoline’, Sci. Total Environ. 92, 13–28.Google Scholar
  20. Pacyna, J. M. and Pacyna, E. G.: 2000, ‘Atmospheric emissions of anthropogenic lead in Europe: Improvements, updates, historical data and projections’, Report No. 2000/31, GKSS Research Centre, Geesthacht.Google Scholar
  21. Prange, A., Boessow, E., Jablonski, R., Krause, P., Lenart, H., Meyercordt, J., Pepelnik, R., Erbsloeh, B., Jantzen, E., Krüger, F., Leonhard, P., Niedergesaess, R. and Tuempling, W. V.: 1997, ‘Erfassung und Beurteilung der Belastung der Elbe mit Schadstoffen, Teilprojekt 2: Schwermetalle – Schwermetallspezies, Geogene Hintergrundwerte und zeitliche Belastungsentwicklung, Abschlussbericht für das BMBF-Forschungsvorhaben 02-WT 9355/4’, GKSS Research Centre, Geesthacht (downloadable from: http://coast.gkss.de/aes/pdf_doku/inhalt_3.pdf).
  22. Prieler, S. and Anderberg, S.: 1996, ‘Assessment of long-term impacts of cadmium and lead load to agricultural soils in the upper Elbe and Oder River Basins’, WP-96-143, IIASA, Laxenburg, Austria.Google Scholar
  23. Rat der Europäischen Gemeinschaften: 1987, ‘Richtlinie des Rates vom 21.7.1987 zur Änderung der Richtlinie 85/210/EWG’, EG-Ambtsbl. L 225/33.Google Scholar
  24. Rogler, H. and Schwertmann, U.: 1981, ‘Erosivität der Niederschlaege und Isoerodenkarte von Bayern’, Z. f. Kulturtechnik und Flurbereinigung 22, 99–112.Google Scholar
  25. Rosman, K. J. R., Chisholm, W., Hong, S., Boutron, C. F. and Candelone, J.-P.: 1995, ‘Lead isotope record in ancient Greenland ice’, in R. D. Wilken, U. Foerstner and A. Knoechel (eds.), Proceedings of the International Conference on Heavy Metals in the Environment, Hamburg, pp. 34–36.Google Scholar
  26. Schulte-Rentrop, A.: 2003, ‘Modellierung des Überlandtransportes von Blei im Elbeeinzugsgebiet über vier Dekaden (1958–1995)’, Report No. 2003/13, GKSS Research Centre, Geesthacht (downloadable from http://dvsun3.gkss.de/BERICHTE/GKSS_Berichte_2003/GKSS_2003_13.pdf).
  27. Statistisches Bundesamt: 1997, Statistisches Jahrbuch 1997, Statistisches Bundesamt, Wiesbaden.Google Scholar
  28. Toro, C., Arunachalam, J., Marin, C., Vinagre, F. and Ostapczuk, P.: 1995, ‘Poplar leaves and pine needles as biomonitors for air pollution’, R. D. Wilken, U. Foerstner and A. Knoechel (eds.), Proceedings of the International Conference on Heavy Metals in the Environment, Hamburg.Google Scholar
  29. USGS-EROS Data Centre: 1996, GTOPO30: Global 30 Arc Second Elevation Data, U.S.G.S. National mapping division, EROS data centre.Google Scholar
  30. UN/ECE: 1998, ‘Report of the Fourth Ministerial ConferenceEnvironment for Europe’, Aarhus, Denmark, 23B25 June 1998 (dowloadable from http://www.unece.org/env/documents/1998/ cep/cep.41.e.pdf).
  31. Von Storch, H., Costa-Cabral, M., Hagner, C., Feser, F., Pacyna, J., Pacyna, E. and Kolb, S.: 2003, ‘Four decades of gasoline lead emissions and control policies in Europe: A retrospective assessment’, Sci. Total Environ. 311, 151–176; doi: 10.1016/S0048-9697(03)00051-2.Google Scholar
  32. Von Storch, H. and Hagner, C.: 2003: ‘Controlling lead concentrations in human blood by regulating the use of lead in gasoline – A case study for Germany’, AMBIO 33, 126–132 (downloadable from: http://w3g.gkss.de/staff/storch/pdf/AMBI3303_126-132.pdf).
  33. Vink, R. J., Behrendt, H. and Salomons, W.: 1999, ‘Development of the heavy metal pollution trends in several European rivers: An analysis of point and diffuse sources’, Water Sci Technol. 39(12), 215–223.Google Scholar
  34. Vink, R. J.: 2002, ‘Heavy metal fluxes in the Elbe and Rhine river basins: Analysis and modelling’, Ph.D Thesis, Free University of Amsterdam.Google Scholar
  35. Vink, R. J. and Peters, S.: 2003, ‘Modelling point and diffuse heavy metal emissions and loads in the Elbe basin’, Hydrol. Process. 17, 1307–1328; doi: 10.1002/hyp.1286.Google Scholar
  36. Wischmeier, W. H. and Smith, D. D.: 1978, ‘Predicting rainfall erosion losses. A guide to conservation planning’, USDA-ARS Agriculture Handbook, no. 537.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute for Coastal ResearchGKSS-Research CentreGeesthachtGermany
  2. 2.Public Works and Water ManagementMinistry of TransportRijswijkThe Netherlands
  3. 3.Leichtweiss-Institut für WasserbauTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations