Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Influence of Water Content and Plants on the Dissipation of Chlorinated Volatile Organic Compounds in Soil

  • 115 Accesses

  • 19 Citations


To devise effective procedures for the remediation of soil contaminated by VOCs, an improved understanding of their fate and transport mechanisms in soil is essential. To show the effect of plants on the dissipation of 1,1,1-trichloroethane (TCA), trichloroethylene (TCE) and tetrachloroethylene (PCE), two types of experiments, vial and column, were conducted. The results suggested that keeping the soil moisture content at field capacity is desirable for VOCs dissipation. All VOCs were dissipated quickly in unplanted columns than planted conditions in early periods of the experiment because more volatilization occurred in unplanted conditions. The plants could take up and retard volatile contaminants, and prevent contamination of ambient air. Although the time for acclimation for microbial communities to contaminants for enhanced biodegradation should be considered, phytoremediation is potentially a cost-effective remediation technique for soils contaminated by volatile organic compounds (VOCs).

This is a preview of subscription content, log in to check access.


  1. Allison, L. E.: 1965, ‘In methods of soil analysis: Part 2, Chemical and microbiological properties’, in C.A. Black (ed.), American Society of Agronomy, Madison, pp. 1367–1378.

  2. Anderson, T. A. and Walton, B. T.: 1995, ‘Comparative fate [14C] trichloroethylene in the root zone of plants from a former solvent disposal site’, Environ. Toxi. Chem. 14, 2041–2047.

  3. Bankston, J. L., Sola, D. L., Komor, A. T. and Dwyer, D. F.: 2002, ‘Degradation of trichloroethylene in wetland microcosms containing broad-leaved cattail and eastern cottonwood’, Water Res. 36, 1539–1546.

  4. Davis, J. W. and Madsen, S.: 1996, ‘Factors affecting the biodegradation of toluene in soil’, Chemosphere 33, 107–130.

  5. Domenico, P. A. and Schwartz, F. W.: 1990, Physical and Chemical Hydrogeology, John Wiley & Sons, New York, pp. 421–540.

  6. Fan, S. and Scow, K. M.: 1993, ‘Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil’, Appl. Environ. Microbial 59, 1911–1918.

  7. Franzluebbers, A. J., Hons, F. M. and Zuberer, D. A.: 1994, ‘Seasonal changes in soil microbial biomass and mineralizable C and N in wheat management systems’, Soil Biol. Biochem. 26, 1469–1475.

  8. Gordon, M., Choe, N., Duffy, J., Ekuan, G., Heilman, P., Muiznieks, I., Newman, L., Ruszaj, M., Shurtleff, B. B., Strand, S. and Wilmoth, J.: 1997, ‘Phytoremediation of trichloroethylene with hybrid poplars in Phytoremediation of soil and water contaminants’, in E. L. Kruger, T. A. Anderson, and J. R. Coats (eds.), American Chemical Society, Washington, USA, pp. 177–185.

  9. Günther, T., Dornberger, U. and Fritsche, W.: 1996, ‘Effects of ryegrass on biodegradation of hydrocarbons’, Chemosphere 33, 203–215.

  10. Jenkinson, D. S. and Powlson, D. S.: 1976, ‘The effects of biocidal treatments on metabolism in soil-V: A method for measuring soil biomass’, Soil Biol. Biochem. 8, 209–213.

  11. Jones, S. A., Lee, R. W. and Kuniansky, E. L.: 1999, ‘Phytoremediation of trichloroethylene (TCE) using cottonwood trees’, 5th International In-Situ and On-Site Bioremediation Symposium, Battelle Press, pp. 101–108.

  12. Lynch, J. M.: 2002, ‘Resilience of the rhizosphere to anthropogenic disturbance’, Biodegradation 13, 21–27.

  13. Narayanan, M., Davis, L. C. and Erickson, L. E.: 1995, ‘Fate of volatile chlorinated organic compounds in a laboratory chamber with alfalfa plants’, Environ. Sci. Technol. 29, 2437–2444.

  14. Newman, L. A., Strand, S. E., Choe, N., Duffy, J., Ekuan, G., Ruszaj, M., Shurtleff, B. B., Wilmoth, J., Heilman, P. and Gordon, M. P.: 1997, ‘Uptake and biotransformation of trichloroethylene by hydro poplars’, Environ. Sci. Technol. 31, 1062–1067.

  15. Newman, L. A., Wang, X., Muiznieks, I. A., Ekuan, G., Ruszaj, M., Cortellucci, R., Domroes, D., Karscig, G., Newman, T., Hashmonay, R. A., Yost, M. G., Heilman, P. E., Duffy, J., Gordon, M. P. and Strand, S. E.: 1999, ‘Remediation of trichloroethylene in an artificial aquifre with trees: A controlled field study’, Environ. Sci. Technol. 33, 2257–2265.

  16. Petersen, L. W., Moldrup, P., El-Farhan, Y. H., Jacobsen, O. H., Yamaguchi, T. and Rolston, D.E.: 1995, ‘The effects of moisture and soil texture on the adsorption of organic vapors’, J. Environ. Qual. 24, 752–759.

  17. Saxton, K. E., Rawls, W. J., Romberger, J. S. and Papendick, R. I.: 1986, ‘Estimating generalized soil-water characteristics from texture’, Soil Sci. Soc. Amer. J. 50, 1031–1036.

  18. Schnabel, W. E., Diets, A. C., Burken, J. G., Schnoor, J. L. and Alvarez, P. J.: 1997, ‘Uptake and transformation of trichloroethylene by edible garden plants’, Water Res. 31, 816–824.

  19. Schnoor, J. L.; 1998, ‘Phytoremediation, Technology Evaluation Report’, TE-98-01, Ground Water Remediation Technologies Analysis Center (GWRTAC), Pittsburgh, PA.

  20. Sheremata, T. W., Yong, R. N. and Guiot, S. R.: 1997, ‘Simulation and sterilization of a surrogate soil organic matter for the study of the fate of trichloroethylene in soil’, Commun. Soil. Sci. Plant. Anal. 28, 1177–1190.

  21. Simonich, S. L. and Hites, R. A.: 1995, ‘Organic pollutant accumulation in vegetation’, Environ. Sci. Technol. 29, 2905–2914.

  22. US Department of Agriculture: 2003, ‘Key to Soil Taxonomy’, 8th Edition, Natural Resources Conservation Service.

  23. US Environmental Protection Agency: 1996a, ‘Clean up the nation's waste sites: Markets and technology trends’, EPA 542/R-96/005A, Office of Solid Waste and Emergency Response, Washington D.C.

  24. US Environmental Protection Agency: 1996b, SW-846, Method 5021.

  25. US Environmental Protection Agency: 1996c, SW-846, Method 3520C.

  26. US Environmental Protection Agency: 1996d, SW-846, Method 8260B.

  27. US Environmental Protection Agency: ‘Ground water issue. Phytoremediation of contaminated soil and ground water at hazardous waste sites’, 2001, EPA-540/S-01/500, Office of Solid Waste and Emergency Response, Washington DC.

  28. Wu, W., Nye, J., Jain, M. K. and Hickey, R. F.: 1998, ‘Anaerobic dechlorination of trichloroethylene (TCE) to ethylene using complex organic materials’, Water Res. 32, 1445–1454.

Download references

Author information

Correspondence to Kijune Sung.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cho, C., Sung, K., Coapcioglu, M.Y. et al. Influence of Water Content and Plants on the Dissipation of Chlorinated Volatile Organic Compounds in Soil. Water Air Soil Pollut 167, 259–271 (2005). https://doi.org/10.1007/s11270-005-0081-8

Download citation


  • biodegradation
  • phytoremediation
  • retardation
  • site capping
  • uptake
  • volatilization
  • volatile organic compounds (VOCs)