Advertisement

Water, Air, and Soil Pollution

, Volume 167, Issue 1–4, pp 259–271 | Cite as

Influence of Water Content and Plants on the Dissipation of Chlorinated Volatile Organic Compounds in Soil

  • Changhwan Cho
  • Kijune SungEmail author
  • M. Yavuz Coapcioglu
  • Malcolm Drew
Article

Abstract

To devise effective procedures for the remediation of soil contaminated by VOCs, an improved understanding of their fate and transport mechanisms in soil is essential. To show the effect of plants on the dissipation of 1,1,1-trichloroethane (TCA), trichloroethylene (TCE) and tetrachloroethylene (PCE), two types of experiments, vial and column, were conducted. The results suggested that keeping the soil moisture content at field capacity is desirable for VOCs dissipation. All VOCs were dissipated quickly in unplanted columns than planted conditions in early periods of the experiment because more volatilization occurred in unplanted conditions. The plants could take up and retard volatile contaminants, and prevent contamination of ambient air. Although the time for acclimation for microbial communities to contaminants for enhanced biodegradation should be considered, phytoremediation is potentially a cost-effective remediation technique for soils contaminated by volatile organic compounds (VOCs).

Keywords

biodegradation phytoremediation retardation site capping uptake volatilization volatile organic compounds (VOCs) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, L. E.: 1965, ‘In methods of soil analysis: Part 2, Chemical and microbiological properties’, in C.A. Black (ed.), American Society of Agronomy, Madison, pp. 1367–1378.Google Scholar
  2. Anderson, T. A. and Walton, B. T.: 1995, ‘Comparative fate [14C] trichloroethylene in the root zone of plants from a former solvent disposal site’, Environ. Toxi. Chem. 14, 2041–2047.Google Scholar
  3. Bankston, J. L., Sola, D. L., Komor, A. T. and Dwyer, D. F.: 2002, ‘Degradation of trichloroethylene in wetland microcosms containing broad-leaved cattail and eastern cottonwood’, Water Res. 36, 1539–1546.CrossRefPubMedGoogle Scholar
  4. Davis, J. W. and Madsen, S.: 1996, ‘Factors affecting the biodegradation of toluene in soil’, Chemosphere 33, 107–130.CrossRefPubMedGoogle Scholar
  5. Domenico, P. A. and Schwartz, F. W.: 1990, Physical and Chemical Hydrogeology, John Wiley & Sons, New York, pp. 421–540.Google Scholar
  6. Fan, S. and Scow, K. M.: 1993, ‘Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil’, Appl. Environ. Microbial 59, 1911–1918.Google Scholar
  7. Franzluebbers, A. J., Hons, F. M. and Zuberer, D. A.: 1994, ‘Seasonal changes in soil microbial biomass and mineralizable C and N in wheat management systems’, Soil Biol. Biochem. 26, 1469–1475.CrossRefGoogle Scholar
  8. Gordon, M., Choe, N., Duffy, J., Ekuan, G., Heilman, P., Muiznieks, I., Newman, L., Ruszaj, M., Shurtleff, B. B., Strand, S. and Wilmoth, J.: 1997, ‘Phytoremediation of trichloroethylene with hybrid poplars in Phytoremediation of soil and water contaminants’, in E. L. Kruger, T. A. Anderson, and J. R. Coats (eds.), American Chemical Society, Washington, USA, pp. 177–185.Google Scholar
  9. Günther, T., Dornberger, U. and Fritsche, W.: 1996, ‘Effects of ryegrass on biodegradation of hydrocarbons’, Chemosphere 33, 203–215.CrossRefPubMedGoogle Scholar
  10. Jenkinson, D. S. and Powlson, D. S.: 1976, ‘The effects of biocidal treatments on metabolism in soil-V: A method for measuring soil biomass’, Soil Biol. Biochem. 8, 209–213.CrossRefGoogle Scholar
  11. Jones, S. A., Lee, R. W. and Kuniansky, E. L.: 1999, ‘Phytoremediation of trichloroethylene (TCE) using cottonwood trees’, 5th International In-Situ and On-Site Bioremediation Symposium, Battelle Press, pp. 101–108.Google Scholar
  12. Lynch, J. M.: 2002, ‘Resilience of the rhizosphere to anthropogenic disturbance’, Biodegradation 13, 21–27.CrossRefPubMedGoogle Scholar
  13. Narayanan, M., Davis, L. C. and Erickson, L. E.: 1995, ‘Fate of volatile chlorinated organic compounds in a laboratory chamber with alfalfa plants’, Environ. Sci. Technol. 29, 2437–2444.Google Scholar
  14. Newman, L. A., Strand, S. E., Choe, N., Duffy, J., Ekuan, G., Ruszaj, M., Shurtleff, B. B., Wilmoth, J., Heilman, P. and Gordon, M. P.: 1997, ‘Uptake and biotransformation of trichloroethylene by hydro poplars’, Environ. Sci. Technol. 31, 1062–1067.CrossRefGoogle Scholar
  15. Newman, L. A., Wang, X., Muiznieks, I. A., Ekuan, G., Ruszaj, M., Cortellucci, R., Domroes, D., Karscig, G., Newman, T., Hashmonay, R. A., Yost, M. G., Heilman, P. E., Duffy, J., Gordon, M. P. and Strand, S. E.: 1999, ‘Remediation of trichloroethylene in an artificial aquifre with trees: A controlled field study’, Environ. Sci. Technol. 33, 2257–2265.CrossRefGoogle Scholar
  16. Petersen, L. W., Moldrup, P., El-Farhan, Y. H., Jacobsen, O. H., Yamaguchi, T. and Rolston, D.E.: 1995, ‘The effects of moisture and soil texture on the adsorption of organic vapors’, J. Environ. Qual. 24, 752–759.Google Scholar
  17. Saxton, K. E., Rawls, W. J., Romberger, J. S. and Papendick, R. I.: 1986, ‘Estimating generalized soil-water characteristics from texture’, Soil Sci. Soc. Amer. J. 50, 1031–1036.Google Scholar
  18. Schnabel, W. E., Diets, A. C., Burken, J. G., Schnoor, J. L. and Alvarez, P. J.: 1997, ‘Uptake and transformation of trichloroethylene by edible garden plants’, Water Res. 31, 816–824.CrossRefGoogle Scholar
  19. Schnoor, J. L.; 1998, ‘Phytoremediation, Technology Evaluation Report’, TE-98-01, Ground Water Remediation Technologies Analysis Center (GWRTAC), Pittsburgh, PA.Google Scholar
  20. Sheremata, T. W., Yong, R. N. and Guiot, S. R.: 1997, ‘Simulation and sterilization of a surrogate soil organic matter for the study of the fate of trichloroethylene in soil’, Commun. Soil. Sci. Plant. Anal. 28, 1177–1190.Google Scholar
  21. Simonich, S. L. and Hites, R. A.: 1995, ‘Organic pollutant accumulation in vegetation’, Environ. Sci. Technol. 29, 2905–2914.Google Scholar
  22. US Department of Agriculture: 2003, ‘Key to Soil Taxonomy’, 8th Edition, Natural Resources Conservation Service.Google Scholar
  23. US Environmental Protection Agency: 1996a, ‘Clean up the nation's waste sites: Markets and technology trends’, EPA 542/R-96/005A, Office of Solid Waste and Emergency Response, Washington D.C.Google Scholar
  24. US Environmental Protection Agency: 1996b, SW-846, Method 5021.Google Scholar
  25. US Environmental Protection Agency: 1996c, SW-846, Method 3520C.Google Scholar
  26. US Environmental Protection Agency: 1996d, SW-846, Method 8260B.Google Scholar
  27. US Environmental Protection Agency: ‘Ground water issue. Phytoremediation of contaminated soil and ground water at hazardous waste sites’, 2001, EPA-540/S-01/500, Office of Solid Waste and Emergency Response, Washington DC.Google Scholar
  28. Wu, W., Nye, J., Jain, M. K. and Hickey, R. F.: 1998, ‘Anaerobic dechlorination of trichloroethylene (TCE) to ethylene using complex organic materials’, Water Res. 32, 1445–1454.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Changhwan Cho
    • 1
  • Kijune Sung
    • 2
    Email author
  • M. Yavuz Coapcioglu
    • 3
  • Malcolm Drew
    • 4
  1. 1.Environmental Site Assessment & Remediation TeamEnviron. Management CorporationIncheonKorea
  2. 2.Division of Environmental System Engineering, Ecological Engineering, MajorPukyong National UniversityBusanKorea
  3. 3.Department of Civil EngineeringTexas A&M UniversityCollege StationUSA
  4. 4.Department of HorticultureTexas A&M UniversityCollege StationUSA

Personalised recommendations