Advertisement

Management Influences on Stream-Flow Variability in the Past and Under Potential Climate Change in a Central European Mining Region

  • Ina PohleEmail author
  • Anne Gädeke
  • Sabine Schümberg
  • Christoph Hinz
  • Hagen Koch
Article
  • 1 Downloads

Abstract

Robust assessments of stream-flow volume and variability under current and potential future conditions are essential for sustainable water resources planning and management. Non-linear and overlapping responses to climate, land use, and water resources management (WRM) make it difficult to link observed stream-flow variability to individual drivers and to project potential future changes in stream-flow volume and variability. Here, we investigate WRM influences on stream-flow variability for two rivers with similar natural catchment characteristics, the Schwarze Elster and the Spree. The Schwarze Elster is characterized by less intensive WRM compared to the Spree. Management influences on stream-flow variability in the past were analysed by comparing observed managed stream-flow with simulated natural flow (model SWIM). Simulation results of natural flow and managed stream-flow (model WBalMo) forced by different climate scenarios were investigated to assess management influences on potential future stream-flow. The Schwarze Elster shows little management influences on stream-flow both in the past and under future scenarios. WRM related to lignite mining activities rather than natural processes dominated seasonal and annual stream-flow variability of the Spree in the past, while reservoir management mainly impacted short-term variability. Long-term and short-term stream-flow variability of the Spree are expected to be further reduced in future by reservoir management and water transfers to ensure minimum flow requirements. Strong impacts of WRM in reducing stream-flow variability in future scenarios underline the role of reservoir management as an effective and flexible adaptation option to uncertain climate change impacts on hydrology.

Keywords

Water resources management Reservoir management Mining Hydrological modelling SWIM WBalMo 

Notes

Acknowledgements

The underlying simulation study has been performed in the project INKA BB TP 21 funded by the Federal Ministry of the Education and Research (BMBF) and the Lusatian and Central German Mining Management Company (LMBV). We are grateful to the Saxon State Office for the Environment, Agriculture and Geology and the Brandenburg State Agency of the Environment for data provision. We thank Josie Geris (University of Aberdeen) for constructive comments on the choice of flow indices and Christoph Jaunich (Brandenburg University of Technology Cottbus-Senftenberg) for initial assessments of historic stream-flow of the Spree. We acknowledge Sheila Gibbs and Pauline Miller (The James Hutton Institute) for proofreading. We are grateful to two anonymous reviewers whose comments helped improving the manuscript.

Supplementary material

11269_2019_2432_MOESM1_ESM.pdf (1.3 mb)
(PDF 1.28 MB)

References

  1. Aryal A, Shrestha S, Babel MS (2019) Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theor Appl Climatol 135 (1-2):193–209.  https://doi.org/10.1007/s00704-017-2359-3 CrossRefGoogle Scholar
  2. Assani AA, Landry R, Daigle J, Chalifour A (2011) Reservoirs effects on the interannual variability of winter and spring streamflow in the St-Maurice River Watershed (Quebec, Canada). Water Resources Management 25(14):3661–3675.  https://doi.org/10.1007/s11269-011-9875-1 CrossRefGoogle Scholar
  3. Baker DB, Richards RP, Loftus TT, Kramer JW (2004) A new flashiness index: characteristics and applications to Midwestern Rivers and streams. Journal of the American Water Resources Association 40(2):503–522.  https://doi.org/10.1111/j.1752-1688.2004.tb01046.x CrossRefGoogle Scholar
  4. Bormann H, Pinter N (2017) Trends in low flows of German rivers since 1950: comparability of different low-flow indicators and their spatial patterns. River Res Appl 33(7):1191–1204.  https://doi.org/10.1002/rra.3152 CrossRefGoogle Scholar
  5. Brown AE, Zhang L, McMahon TA, Western AW, Vertessy RA (2005) A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J Hydrol 310(1-4):28–61.  https://doi.org/10.1016/j.jhydrol.2004.12.010, 0608246v3CrossRefGoogle Scholar
  6. DEBRIV Bundesverband Braunkohle (2017) Aktuelle Monatsdaten. http://www.braunkohle.de/5-0-Aktuelle-Monatsdaten.html
  7. Döll P, Jiménez-Cisneros B, Oki T, Arnell N, Benito G, Cogley J, Jiang T, Kundzewicz Z, Mwakalila S, Nishijima A (2015) Integrating risks of climate change into water management. Hydrol Sci J 60(1):4–13.  https://doi.org/10.1080/02626667.2014.967250 CrossRefGoogle Scholar
  8. Eisner S, Flörke M, Chamorro A, Daggupati P, Donnelly C, Huang J, Hundecha Y, Koch H, Kalugin A, Krylenko I, Mishra V, Piniewski M, Samaniego L, Seidou O, Wallner M, Krysanova V (2017) An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins. Climatic Change 141(3):401–417.  https://doi.org/10.1007/s10584-016-1844-5 CrossRefGoogle Scholar
  9. Fahle M, Dietrich O (2014) Estimation of evapotranspiration using diurnal groundwater level fluctuations: comparison of different approaches with groundwater lysimeter data. Water Resources Research 50(1):273–286.  https://doi.org/10.1002/2013WR014472 CrossRefGoogle Scholar
  10. Gädeke A, Hölzel H, Koch H, Pohle I, Grünewald U (2014) Analysis of uncertainties in the hydrological response of a model-based climate change impact assessment in a subcatchment of the Spree River, Germany. Hydrol Processes 28(12):3978–3998.CrossRefGoogle Scholar
  11. Gädeke A, Pohle I, Koch H, Grünewald U (2017) Trend analysis for integrated regional climate change impact assessments in the Lusatian river catchments (north-eastern Germany). Regional Environmental Change 17(6):1751–1762.  https://doi.org/10.1007/s10113-017-1138-0 CrossRefGoogle Scholar
  12. Gaupp F, Hall J, Dadson S (2015) The role of storage capacity in coping with intra-annual runoff variability on a global scale. Environmental Res Lett 17(12):3943.  https://doi.org/10.1088/1748-9326/10/12/125001 CrossRefGoogle Scholar
  13. Geris J, Tetzlaff D, Seibert J, Vis M, Soulsby C (2015) Conceptual modelling to assess hydrological impacts and evaluate environmental flow scenarios in montane river systems regulated for hydropower. River Res Appl 31:1066–1081.  https://doi.org/10.1002/rra CrossRefGoogle Scholar
  14. Giuliani M, Anghileri D, Castelletti A, Vu PN, Soncini-Sessa R (2016) Large storage operations under climate change: expanding uncertainties and evolving tradeoffs. Environmental Res Lett 11(3).  https://doi.org/10.1088/1748-9326/11/3/035009 CrossRefGoogle Scholar
  15. Grünewald U (2001) Water resources management in river catchments influenced by lignite mining. Ecol Eng 17(2-3):143–152.  https://doi.org/10.1016/S0925-8574(00)00154-3 CrossRefGoogle Scholar
  16. Hangen-Brodersen C, Strempel P, Grünewald U (2005) Characteristics of catchments disturbed by lignite mining - case study of Schlabendorf/Seese (Germany). Ecol Eng 24(1-2):37–48.  https://doi.org/10.1016/j.ecoleng.2004.12.005 CrossRefGoogle Scholar
  17. Holko L, Parajka J, Kostka Z, Škoda P, Blöschl G (2011) Flashiness of mountain streams in Slovakia and Austria. J Hydrol 405(3-4):392–401.  https://doi.org/10.1016/j.jhydrol.2011.05.038 CrossRefGoogle Scholar
  18. Huang S, Krysanova V, Österle H, Hattermann FF (2010) Simulation of spatiotemporal dynamics of water fluxes in Germany under climate change. Hydrol Processes 24(23):3289–3306.  https://doi.org/10.1002/hyp.7753 CrossRefGoogle Scholar
  19. Kaden S, Schramm M, Redetzky M Xi RZ, Gu WZ, Seiler KP (eds) (2004) ArcGRM: inter- active simulation system for water resources planning and management in river basins. Taylor & Francis, LondonGoogle Scholar
  20. Koch H, Kaltofen M, Grünewald U, Messner F, Karkuschke M, Zwirner O, Schramm M (2005) Scenarios of water resources management in the Lower Lusatian mining district, Germany. Ecol Eng 24(1-2):49–57.  https://doi.org/10.1016/j.ecoleng.2004.12.006 CrossRefGoogle Scholar
  21. Koch H, Liersch S, Gonçalves De Azevedo JR, Silva A, Hattermann FF (2018) Assessment of observed and simulated low flow indices for a highly managed river basin. Hydrology Research In Press,  https://doi.org/10.2166/nh.2018.168 CrossRefGoogle Scholar
  22. Krysanova V, Müller-Wohlfeil DI, Becker A (1998) Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecol Modelling 106(2-3):261–289.  https://doi.org/10.1016/S0304-3800(97)00204-4 CrossRefGoogle Scholar
  23. Liersch S, Koch H, Hattermann FF (2017) Management scenarios of the grand ethiopian renaissance dam and their impacts under recent and future climates. Water 9(10):1–24.  https://doi.org/10.3390/w9100728 CrossRefGoogle Scholar
  24. Madsen H, Lawrence D, Lang M, Martinkova M, Kjeldsen TR (2014) Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J Hydrol 519(PD):3634–3650.  https://doi.org/10.1016/j.jhydrol.2014.11.003 CrossRefGoogle Scholar
  25. McManamay RA, Orth DJ, Dolloff CA (2012) Revisiting the homogenization of dammed rivers in the southeastern US. J Hydrol 424-425:217–237.  https://doi.org/10.1016/j.jhydrol.2012.01.003 CrossRefGoogle Scholar
  26. Mehdi B, Ludwig R, Lehner B (2015) Evaluating the impacts of climate change and crop land use change on streamflow, nitrates and phosphorus: a modeling study in Bavaria. J Hydrol Regional Studies 4(PB):60–90.  https://doi.org/10.1016/j.ejrh.2015.04.009 CrossRefGoogle Scholar
  27. Mittal N, Bhave AG, Mishra A, Singh R (2016) Impact of human intervention and climate change on natural flow regime. Water Resources Management 30(2):685–699.  https://doi.org/10.1007/s11269-015-1185-6 CrossRefGoogle Scholar
  28. Mogollón B, Frimpong EA, Hoegh AB, Angermeier PL (2016) Recent changes in stream flashiness and flooding, and effects of flood management in North Carolina and Virginia. Journal of the American Water Resources Association 52(3):561–577.  https://doi.org/10.1111/1752-1688.12408 CrossRefGoogle Scholar
  29. Natkhin M, Steidl J, Dietrich O, Dannowski R, Lischeid G (2012) Differentiating between climate effects and forest growth dynamics effects on decreasing groundwater recharge in a lowland region in Northeast Germany. J Hydrol 448-449:245–254.  https://doi.org/10.1016/j.jhydrol.2012.05.005 CrossRefGoogle Scholar
  30. Orlowsky B, Gerstengarbe FW, Werner PC (2008) A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theor Appl Climatol 92(3-4):209–223.  https://doi.org/10.1007/s00704-007-0352-y CrossRefGoogle Scholar
  31. Ouyang W, Hao F, Song K, Zhang X (2011) Cascade dam-induced hydrological disturbance and environmental impact in the upper stream of the yellow river. Water Resources Management 25(3):913–927.  https://doi.org/10.1007/s11269-010-9733-6 CrossRefGoogle Scholar
  32. Poff NL, Olden JD (2017) Can dams be designed for sustainability? Science 358(6368):1252–1253.  https://doi.org/10.1126/science.aaq1422 CrossRefGoogle Scholar
  33. Pohle I (2014) Analyse der potenziellen Auswirkungen von Klima- und landnutzungsänderungen auf den natürlichen Wasserhaushalt und die Wassermengenbewirtschaftung der Lausitz. PhD Thesis, Brandenburg University of Technology Cottbus-SenftenbergGoogle Scholar
  34. Pohle I, Koch H, Conradt T, Gädeke A, Grünewald U (2015) Potential impacts of climate change and regional anthropogenic activities in Central European mesoscale catchments. Hydrol Sci J 60(5):141217125340005.  https://doi.org/10.1080/02626667.2014.968571 CrossRefGoogle Scholar
  35. Pohle I, Koch H, Zimmermann K, Gädeke A, Claus T, Uhlmann W, Kaltofen M, Redetzky M, Schramm M, Müller F, Schoenheinz D, Grünewald U (2016) Analyse von Wassermenge und Wasserbeschaffen- heit fu̇r Klima- und Bewirtschaftungsszenarien: Aufbau und Nutzung einer Modellkaskade für das Spreeeinzugsgebiet. Hydrol Wasserbewirtsch 60(3):176–195Google Scholar
  36. Pumo D, Francipane A, Cannarozzo M, Antinoro C, Noto LV (2018) Monthly hydrological indicators to assess possible alterations on rivers’ flow regime. Water Resources Management 32(11):3687–3706.  https://doi.org/10.1007/s11269-018-2013-6 CrossRefGoogle Scholar
  37. Räsänen TA, Koponen J, Lauri H, Kummu M (2012) Downstream hydrological impacts of hydropower development in the Upper Mekong Basin. Water Resources Management 26(12):3495–3513.  https://doi.org/10.1007/s11269-012-0087-0 CrossRefGoogle Scholar
  38. Renner M, Brust K, Schwärzel K, Volk M, Bernhofer C (2014) Separating the effects of changes in land cover and climate: a hydro-meteorological analysis of the past 60 yr in Saxony, Germany. Hydrol Earth Sys Sci 18(1):389–405.  https://doi.org/10.5194/hess-18-389-2014 CrossRefGoogle Scholar
  39. Schaefli B, Hingray B, Musy A (2007) Climate change and hydropower production in the Swiss Alps: quantification of potential impacts and related modelling uncertainties. Hydrol Earth Sys Sci 11(3):1191–1205.  https://doi.org/10.5194/hess-11-1191-2007 CrossRefGoogle Scholar
  40. Srinivasan V, Sanderson M, Garcia M, Konar M, Blöschl G, Sivapalan M (2017) Prediction in a socio-hydrological world. Hydrol Sci J 62 (3):338–345.  https://doi.org/10.1080/02626667.2016.1253844 CrossRefGoogle Scholar
  41. Stahl K, Hisdal H, Hannaford J, Tallaksen LM, Van Lanen HA, Sauquet E, Demuth S, Fendekova M, Jodar J (2010) Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrol Earth Sys Sci 14 (12):2367–2382.  https://doi.org/10.5194/hess-14-2367-2010 CrossRefGoogle Scholar
  42. Stakhiv EZ (2011) Pragmatic approaches for water management under climate change uncertainty. Journal of the American Water Resources Association 47(6):1183–1196.  https://doi.org/10.1111/j.1752-1688.2011.00589.x CrossRefGoogle Scholar
  43. Vieira J, Cunha MC, Luís R (2018) Integrated assessment of water reservoir systems performance with the implementation of ecological flows under varying climatic conditions. Water Resources Management 32(15):5183–5205.  https://doi.org/10.1007/s11269-018-2153-8 CrossRefGoogle Scholar
  44. Viglione A, Parajka J, Rogger M, Salinas JL, Laaha G, Sivapalan M, Blöschl G (2013) Comparative assessment of predictions in ungauged basins - Part 3: Runoff signatures in Austria. Hydrol Earth Sys Sci 17(6):2263–2279.  https://doi.org/10.5194/hess-17-2263-2013 CrossRefGoogle Scholar
  45. Vörösmarty CJ, Sharma KP, Fekete BM, Copeland AH, Holden J, Marble J, Lough JA (1997) The storage and aging of continental runoff in large reservoir systems of the world. Ambio 26(4):210–219Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Environmental and Biochemical SciencesThe James Hutton InstituteAberdeenUK
  2. 2.Chair of HydrologyBrandenburg University of Technology Cottbus-SenftenbergCottbusGermany
  3. 3.Research Domain Earth System AnalysisPotsdam Institute for Climate Impact ResearchPotsdamGermany
  4. 4.Research Domain Climate Impacts and VulnerabilitiesPotsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations