Advertisement

Efficacy of Rainfall-Runoff Models in Loose Coupling Spacial Decision Support Systems Modelbase

  • Sílvio Luís Rafaeli NetoEmail author
  • Eder Alexandre Schatz Sá
  • Aline Bernarda Debastiani
  • Víctor Luís Padilha
  • Thiago Alves Antunes
Article
  • 22 Downloads

Abstract

The need for a prognosis for water resources management in Brazil means that studies with hydrological models are required, as part of a Spatial Decision Support System (SDSS). Choosing the model in a modelbase requires knowledge of the performance of the existing models in the specific situations in which they are to be applied. This paper evaluated the performance of two physically-based models and two numerical-based models in their ability to represent the rainfall-runoff process. The study occurred in a watershed in southern Brazil. Historical data series from the same periods were taken to calibrate and train the models, using two different periods to validate their efficacy. The results show that the SWAT and TOPMODEL models presented an inferior performance compared to the numerical-based models (RT and ANN). However, all the models presented satisfactory levels of efficacy and the potential for use in different management situations.

Keywords

Hydrological modeling Water resources management SWAT TOPMODEL Decision tree Artificial neural network 

Notes

Compliance with Ethical Standards

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

  1. Alsabhan W (2016) Designing a human-centred, mobile interface to support real-time flood forecasting and warning system. Thesis. Brunel UniversityGoogle Scholar
  2. Antunes TA (2015) Modelagem hidrológica da bacia hidrográfica do Alto Canoas através do modelo swat. Dissertation. State University of Santa CatarinaGoogle Scholar
  3. Armstrong M, Densham P, Rushton G (1986) Architecture for a microcomputer based spatial decision support system. International Symposium on Spatial Data Handling 2:120–131 Seatle: International Geographical UnionGoogle Scholar
  4. Arnold JG, Moriasi DN, Gassman PW et al (2012) SWAT: Model Use, Calibration and Validation. Trans ASABE 55:1491–1508.  https://doi.org/10.13031/2013.42256 CrossRefGoogle Scholar
  5. Beven KJ, Kirby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Process 24(1):43–69.  https://doi.org/10.1080/02626667909491834 CrossRefGoogle Scholar
  6. Chorley RJ, Kennedy BA (1971) Physical geography: a systems approach. Prentice-Hall International, LondonGoogle Scholar
  7. Clark M, Kavetski D, Fenicia F (2011) Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resour Res 47(9):1–16.  https://doi.org/10.1029/2010WR009827 CrossRefGoogle Scholar
  8. Dawson CW, Wilby RL (2001) Hydrological modelling using artificial neural networks. Prog Phys Geogr 25(1):80–108.  https://doi.org/10.1177/030913330102500104 CrossRefGoogle Scholar
  9. Debastiani AB, Silva RD, Neto SLR (2016) Eficácia da arquitetura MLP em modo closed-loop para simulação de um Sistema Hidrológico. Rev Bras Recur Hidr 21(4):821–831.  https://doi.org/10.1590/2318-0331.011615124 CrossRefGoogle Scholar
  10. Densham PJ (1991) Spatial decision support systems. In: Maguire DJ, Goodchild MF, Rhind DW (eds) Geographical information systems: principles and applications. Longman, New York, pp 403–412Google Scholar
  11. Densham PJ, Goodchild MF (1989) Spatial decision support systems: a research agenda. GIS/LIS'89, 2, Orlando, pp. 707–716Google Scholar
  12. Devantier BA, Feldman AD (1993) Review of GIS applications in hydrologic modeling. J Water Resour Plan Manag 119:246–260.  https://doi.org/10.1061/(ASCE)0733-9496(1993)119:2(246) CrossRefGoogle Scholar
  13. EPAGRI (2014) Mapas digitais de Santa Catarina. Florianópolis. Available in: http://ciram.epagri.sc.gov.br/mapoteca/ Access in mar 10
  14. Fakhari A, Moghadam AM (2013) Combination of classification and regression in decision tree for multi-labeling image annotation and retrieval. Appl Soft Comput 13(2):1292–1302.  https://doi.org/10.1016/j.asoc.2012.10.019 CrossRefGoogle Scholar
  15. Fitz PR (2008) Geoprocessamento sem complicação. Oficina de Textos. São Paulo, São PauloGoogle Scholar
  16. Govindaraju RS, Rao AR (2000) Artificial neural networks in hydrology. Springer, Dordrecht, p 332.  https://doi.org/10.1007/978-94-015-9341-0 CrossRefGoogle Scholar
  17. Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol 377:80–91.  https://doi.org/10.1016/j.jhydrol.2009.08.003 CrossRefGoogle Scholar
  18. Hagan MT, Menhaj M (1994) Training feed-forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993.  https://doi.org/10.1109/72.329697 CrossRefGoogle Scholar
  19. Haykin S (2001) Neural networks: principles and practice. Bookman, Porto AlegreGoogle Scholar
  20. Heath GE (2010) Training, testing and validating data set in Neural Network. Retrieved 74, 2013. http://www.mathworks.com/matlabcentral/newsreader/view_thread/295781#917734. Accessed 11 July 2016
  21. Keenan PB (2003) Spatial decision support systems. In Mora M, Forgione G, Gupta JN, Decision making support systems: achievements and challenges for the new decade. Idea Group, pp. 28–39Google Scholar
  22. Koch J, Cornelissen T, Fang Z et al (2016) Inter-comparison of three distributed hydrological models with respect to seasonal variability of soil moisture patterns at a small forested catchment. J Hydrol 533:234–349.  https://doi.org/10.1016/j.jhydrol.2015.12.002 CrossRefGoogle Scholar
  23. Krause P, Boyle DP, Base FB (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97.  https://doi.org/10.5194/adgeo-5-89-2005 CrossRefGoogle Scholar
  24. Legates DR, McCabe GJ Jr (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241.  https://doi.org/10.1029/1998WR900018 CrossRefGoogle Scholar
  25. Li N, Raskin R, Goodchild MF, Janowicz K (2012) An ontology-driven framework and web portal for spatial decision support. Trasctions in GIS 16(3):313–329.  https://doi.org/10.1111/j.1467-9671.2012.01325.x CrossRefGoogle Scholar
  26. Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2013) Geographic information systems and science. 3 Edition, Porto Alegre: Bookman, pp. 560Google Scholar
  27. Metcalfe P, Beven K, Freer J (2015) Dynamic TOPMODEL: A new implementation in R and its sensitivity time and space steps. Environ Model Softw 72:155–172.  https://doi.org/10.1016/j.envsoft.2015.06.010 CrossRefGoogle Scholar
  28. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900.Google Scholar
  29. Morid S, Gosain AK, Keshari AK (2002) Comparison of the SWAT Model and ANN for daily simulation of runoff in snowbound ungauged catchments (1 ed.). At Cardiff, UK: Conference: 5th International Conference on Hydro informatics, Cardiff, 1–5 July 2002Google Scholar
  30. Neto SLR (2000) Um modelo conceitual de Sistema de Apoio à Decisão Espacial para gerenciamento de desastres por inundações. Thesis. São Paulo UniversityGoogle Scholar
  31. Neto SLR, Rodrigues M (1999) A taxonomy of strategies for developing spatial decision support systems. In: Wojtkowski W, Wojtkowski WG, Wrycza S, Zupancic J (eds) Systems development methods for databases, enterprise, modelling, and workflow management. Kluwer Academic/Plenum Publishers, New York, pp 139–155.  https://doi.org/10.1007/978-1-4615-4261-2 CrossRefGoogle Scholar
  32. Noori N, Kalin L (2016) Coupling SWAT and ANN models for enhanced daily streamflow prediction. J Hydrol 533:141–151.  https://doi.org/10.1016/j.jhydrol.2015.11.050 CrossRefGoogle Scholar
  33. Quinlan JR (1992) Learning with continuous classes. In: Adams N, Sterling L (eds) Proceedings of the Fifth Australian Joint Conference on Artificial Intelligence. World Scientific, Singapore, pp 343–348Google Scholar
  34. Riad S, Mania J, Bouchaou L, Najjar Y (2004) Rainfall-runoff model using an artificial neural network approach. Math Comput Model 40:839–846.  https://doi.org/10.1016/j.mcm.2004.10.012 CrossRefGoogle Scholar
  35. Runck BC (2017) Spatial decision-support system. The International Encyclopedia of Geography, pp. 8.  https://doi.org/10.1002/9781118786352.wbieg1018
  36. Sá EAS (2014) Estudo do modelo TOPMODEL na bacia hidrográfica do Alto Canoas SC. Dissertation. State University of Santa CatarinaGoogle Scholar
  37. Sage A (1991) Decision support systems engineering. Willey & Sons, New York, p 360Google Scholar
  38. Solomantine DP, Dulal KN (2003) Model trees as an alternative to neural networks in rainfall–runoff modelling. Hydrol Sci J 48(3):399–411.  https://doi.org/10.1623/hysj.48.3.399.45291 CrossRefGoogle Scholar
  39. Sprague RH Jr, Watson HJ (1991) Sistema de apoio à decisão: colocando a teoria em prática. Campus, Rio de Janeiro, p 498Google Scholar
  40. Sugumaran R, Degroote J (2011) Spatial decision support systems. CRC Press, New YorkGoogle Scholar
  41. Suliman AH, Jajarmizadeh M, Harun S, Darus IZ (2015) Comparison of semi-distributed, GIS-based hydrological models for the prediction of streamflow in a large catchment. Water Resour Manag 29(9):3095–3110.  https://doi.org/10.1007/s11269-015-0984-0 CrossRefGoogle Scholar
  42. Turban E (1995) Decision support systems and expert systems. Prentice-Hall, Englewood Cliffs, p 930Google Scholar
  43. Yang W (2017) Geomatics and water policy. In: Renzetti S, Dupont DP (eds) Water policy and governance in Canada. Springer, Dordrecht, pp 435–451CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Sílvio Luís Rafaeli Neto
    • 1
    Email author
  • Eder Alexandre Schatz Sá
    • 2
  • Aline Bernarda Debastiani
    • 3
  • Víctor Luís Padilha
    • 4
  • Thiago Alves Antunes
    • 5
  1. 1.Department of Environmental and Sanitary EngineeringUniversity of the State of Santa Catarina – UDESCLagesBrazil
  2. 2.Department of SoilsUniversity of the State of Santa Catarina – UDESCLagesBrazil
  3. 3.Department of Forest EngineeringFederal University of Paraná – UFPRCuritibaBrazil
  4. 4.Department of GeographyUniversity of the State of Santa Catarina – UDESCFlorianopolisBrazil
  5. 5.Department of Forest EngineeringUniversity of the State of Santa Catarina – UDESCLagesBrazil

Personalised recommendations