Skip to main content
Log in

Budyko’s Based Method for Annual Runoff Characterization across Different Climatic Areas: an Application to United States

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Runoff data knowledge is of fundamental importance for a wide range of hydrological, ecological, and socioeconomic applications. The reconstruction of annual runoff is a fundamental task for several activities related to water resources management, especially for ungauged basins. At catchment scales, the Budyko’s framework provides an extremely useful and, in some cases, accurate estimation of the long-term partitioning of precipitation into evapotranspiration and runoff as a function of the prevailing climatic conditions. Recently the same long-term partitioning rules have been successfully used to describe water partitioning also at the annual scale and calculate the annual runoff distribution within a simple analytic framework in arid and semi-arid basins. One of the main advantages of the latter method is that only annual precipitation and potential evapotranspiration statistics, and the Fu’s equation parameter ω are required to obtain the annual runoff probability distribution. The aim of this study is to test the limit and potentialities of the aforementioned method under different climatic conditions. To this aim, the model is applied to more than four hundred basins located in the United States. Catchments were grouped into five different samples, following the subdivision of the continental region in five homogeneous climatic zones according to Köppen-Geiger classification. The theoretical probability distribution of annual runoff at each basin has been compared with that derived from historical observations. The results confirm the capability of the tested technique to reproduce the empirical annual runoff distributions with similar and satisfactory performances across different areas, revealing a good option also in cases characterized by climate and hydrological conditions very different from those hypothesized during the original analytical model design, thus extending the geographical and conceptual limits of applicability of the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abatzoglou JT, Ficklin DL (2017) Climatic and physiographic controls of spatial variability in surface water balance over the contiguous United States using the Budyko relationship. Water Resour Res 53(9): 7630–7643

  • Berghuijs W, Woods R, Hrachowitz M (2014) A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat Clim Chang 4:583–586

    Article  Google Scholar 

  • Budyko (1961) The heat balance of the earth's surface. Sov Geogr 2:3–13

    Google Scholar 

  • Budyko (1974) Climate and life. Academic, San Diego

    Google Scholar 

  • Caracciolo D, Deidda R, Viola F (2017) Analytical estimation of annual runoff distribution in ungauged seasonally dry basins based on a first order Taylor expansion of the Fu’s equation. Adv Water Resour 109:320–332

    Article  Google Scholar 

  • Caracciolo D, Istanbulluoglu E, Noto LV, Collins SL (2016) Mechanisms of shrub encroachment into Northern Chihuahuan Desert grasslands and impacts of climate change investigated using a cellular automata model. Adv Water Resour 91:46–62

  • Carmona AM, Sivapalan M, Yaeger MA, Poveda G (2014) Regional patterns of interannual variability of catchment water balances across the continental U.S.: a Budyko framework. Water Resour Res 50:9177–9193. https://doi.org/10.1002/2014wr016013

    Article  Google Scholar 

  • Dai A (2008) Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophys Res Lett 35(12):L12802. https://doi.org/10.1029/2008GL033295

  • Donohue RJ, Roderick ML, McVicar TR (2007) On the importance of including vegetation dynamics in Budyko's hydrological model. Hydrol Earth Syst Sci 11:983–995

    Article  Google Scholar 

  • Duan Q, Schaake J, Andréassian V, Franks S, Goteti G, Gupta HV, Gusev YM, Habets F, Hall A, Hay L, Hogue T, Huang M, Leavesley G, Liang X, Nasonova ON, Noilhan J, Oudin L, Sorooshian S, Wagener T, Wood EF (2006) Model parameter estimation experiment (MOPEX): an overview of science strategy and major results from the second and third workshops. J Hydrol 320:3–17

    Article  Google Scholar 

  • Essou GR, Arsenault R, Brissette FP (2016) Comparison of climate datasets for lumped hydrological modeling over the continental United States. J Hydrol 537:334–345

    Article  Google Scholar 

  • Fu BP (1981) On the calculation of the evaporation from land surface. Sci Atmos Sin 5:23–31

    Google Scholar 

  • Gentine P, D'Odorico P, Lintner BR, Sivandran G, Salvucci G (2012) Interdependence of climate, soil, and vegetation as constrained by the Budyko curve. Geophys Res Lett 39(19). https://doi.org/10.1029/2012GL053492

  • Greve P, Gudmundsson L, Orlowsky B, Seneviratne SI (2015) Introducing a probabilistic Budyko framework. Geophys Res Lett 42:2261–2269

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  • Li D, Pan M, Cong Z, Zhang L, Wood E (2013) Vegetation control on water and energy balance within the Budyko framework. Water Resour Res 49:969–976

    Article  Google Scholar 

  • Milly PC, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347–350

    Article  Google Scholar 

  • Pike J (1964) The estimation of annual run-off from meteorological data in a tropical climate. J Hydrol 2:116–123

    Article  Google Scholar 

  • Pumo D, Viola F, Noto LV (2016) Generation of natural runoff monthly series at ungauged sites using a regional regressive model. Water (Switzerland) 8. doi:https://doi.org/10.3390/w8050209

  • Pumo D, Arnone E, Francipane A, Caracciolo D, Noto L (2017) Potential implications of climate change and urbanization on watershed hydrology. J Hydrol 554:80–99

    Article  Google Scholar 

  • Renner M, Bernhofer C (2012) Applying simple water-energy balance frameworks to predict the climate sensitivity of streamflow over the continental United States. Hydrol Earth Syst Sci 16:2531–2546

    Article  Google Scholar 

  • Schaake J, Cong S, Duan Q (2006) The US MOPEX data set. IAHS Publ 307:9

    Google Scholar 

  • Seager R, Ting M, Li C, Naik N, Cook B, Nakamura J, Liu H (2013) Projections of declining surface-water availability for the southwestern United States. Nat Clim Chang 3:482–486

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Turc L (1954) Le bilan d’eau des sols. Relation entre la precipitation, l’evaporation et l’ecoulement. Ann Agron 5:491–569

    Google Scholar 

  • Vangelis H, Spiliotis M, Tsakiris G (2011) Drought severity assessment based on bivariate probability analysis. Water Resour Manag 25:357–371

    Article  Google Scholar 

  • Viola F, Francipane A, Caracciolo D, Pumo D, La Loggia G, Noto LV (2016) Co-evolution of hydrological components under climate change scenarios in the Mediterranean area. Sci Total Environ 544:515–524. https://doi.org/10.1016/j.scitotenv.2015.12.004

    Article  Google Scholar 

  • Viola F, Caracciolo D, Forestieri A, Pumo D, Noto L (2017) Annual runoff assessment in arid and semiarid Mediterranean watersheds under the Budyko’s framework. Hydrol Process 31:1876–1888

    Article  Google Scholar 

  • Xu X, Liu W, Scanlon BR, Zhang L, Pan M (2013) Local and global factors controlling water-energy balances within the Budyko framework. Geophys Res Lett 40:6123–6129

    Article  Google Scholar 

  • Yang D, Shao W, Yeh PJF, Yang H, Kanae S, Oki T (2009) Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resour Res 45(7):W00A14. https://doi.org/10.1029/2008WR006948

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Caracciolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caracciolo, D., Pumo, D. & Viola, F. Budyko’s Based Method for Annual Runoff Characterization across Different Climatic Areas: an Application to United States. Water Resour Manage 32, 3189–3202 (2018). https://doi.org/10.1007/s11269-018-1984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-018-1984-7

Keywords

Navigation