Advertisement

Water Resources Management

, Volume 32, Issue 4, pp 1291–1306 | Cite as

Future Scenarios of Surface Water Resources Availability in North African Dams

  • Yves Tramblay
  • Lionel Jarlan
  • Lahoucine Hanich
  • Samuel Somot
Article

Abstract

Climate change may have strong impacts on water resources in developing countries. In North Africa, many dams and reservoirs have been built to secure water availability in the context of a strong inter-annual variability of precipitation. The goal of this study is to evaluate climate change impacts on surface water resources for the largest dams in Algeria, Morocco and Tunisia using high-resolution (12 km) regional climate models (RCM) simulations. To evaluate the atmospheric demand (evapotranspiration), two approaches are compared: The direct use of actual evaporation simulated by the RCMs, or estimation of reference evapotranspiration computed with the Hargreaves-Samani (HAR) equation, relying on air temperature only, and the FAO-Penman Monteith (PM) equation, computed with temperature, wind, radiation and relative humidity. Results showed a strong convergence of the RCM simulations towards increased temperature and a decrease in precipitation, in particular during spring and the western part of North Africa. A decrease in actual evapotranspiration, highly correlated to the decrease in precipitations, is observed throughout the study area. On the opposite, an increase in reference evapotranspiration is observed, with similar changes between HAR and PM equations, indicating that the main driver of change is the temperature increase. Since the catchments are rather water-limited than energy-limited, despite opposite projections for actual and reference evapotranspiration a decrease of water availability is projected for all basins under all scenarios, with a strong east-to-west gradient. The projected decrease is stronger when considering reference evapotranspiration rather than actual evaporation. These pessimistic future projections are an incentive to adapt the current management of surface water resources to future climatic conditions.

Keywords

Water resources Maghreb Dams RCM Evapotranspiration Climate change CORDEX 

Notes

Acknowledgements

This work is part of the ENVI-Med CLIHMag ("Changement cLimatique et Impacts Hydrologiques au Maghreb") project funded by the program INSU-MISTRALS. It is a contribution to the MISTRALS/HyMeX program (HYdrological cycle in the Mediterranean Experiment). Thanks are due to the EuroCORDEX (http://www.euro-cordex.net/) climate modelers who provided the RCM simulations. The detailed projections for each dam catchment and the processed RCM outputs are made accessible upon request.

Compliance with Ethical Standards

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration, guidelines for computing crop water requirements. In: Irrigation and drain, Paper No 56 FAO, Rome, 300 ppGoogle Scholar
  2. Bador M, Terray L, Boé J, Somot S, Alias A, Gibelin A-L, Dubuisson B (2017) Future summer mega-heatwave and record-breaking temperatures in a warmer France climate. ERL, 12(7), http://iopscience.iop.org/article/10.1088/1748-9326/aa751c
  3. Balsamo GP, Viterbo A, Beljaars BJJM, van den Hurk B, Hirschi M, Betts A, Scipal K (2009) A revised hydrology for the ECMWF model: verification from field site to terrestrial water storage and impact in the integrated forecast system. J Hydrometeorol 10(3):623–643.  https://doi.org/10.1175/2008JHM1068.1 CrossRefGoogle Scholar
  4. Barella-Ortiz A, Polcher J, Tuzet A, Laval K (2013) Potential evaporation estimation through an unstressed surface-energy balance and its sensitivity to climate change. Hydrol Earth Syst Sci 17(11):4625–4639.  https://doi.org/10.5194/hess-17-4625-2013 CrossRefGoogle Scholar
  5. Bargaoui Z, Tramblay Y, Lawin E, Servat E (2014) Seasonal precipitation variability in regional climate simulations over Northern basins of Tunisia. Int J Climatol 34(1):235–248.  https://doi.org/10.1002/joc.3683 CrossRefGoogle Scholar
  6. Bell VA, Gedney N, Kay AL, Smith RNB, Jones RG, Moore RJ (2011) Estimating potential evaporation from vegetated surfaces for water management impact assessments using climate model output. J Hydrometeorol 12(5):1127–1136.  https://doi.org/10.1175/2011JHM1379.1 CrossRefGoogle Scholar
  7. Casanueva A, Kotlarski S, Herrera S, Fernández J, Gutiérrez J, Boberg F, Colette A, Christensen OB, Goergen K, Jacob D, Keuler K, Nikulin G, Teichmann C, Vautard R (2015) Daily precipitation statistics in the EURO-CORDEX rcm ensemble: added value of raw and bias-corrected high-resolution simulations. Clim Dyn 47:719–737CrossRefGoogle Scholar
  8. Colin J, Déqué M, Radu R, Somot S (2010) Sensitivity study of heavy precipitations in limited area model climate simulation: influence of the size of the domain and the use of the spectral nudging technique. Tellus-A 62(5):591–604.  https://doi.org/10.1111/j.1600-0870.2010.00467.x CrossRefGoogle Scholar
  9. Doms G, Förstner J, Heise E, Herzog HJ, Mironov D, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz JP, Vogel G (2011) A Description of the Nonhydrostatic Regional COSMO model. Part II: Physical Parameterization, Offenbach, p 161Google Scholar
  10. Douville H, Planton S, Royer JF, Stephenson DB, Tyteca S, Kergoat L, Lafont S, Betts RA (2000) The importance of vegetation feedbacks in doubled-CO2 time-slice experiments. J Geophys Res 105(D11):14841–14861.  https://doi.org/10.1029/1999JD901086 CrossRefGoogle Scholar
  11. Droogers P, Immerzeel WW, Terink W, Hoogeveen J, Bierkens MFP, van Beek LPH, Debele B (2012) Water resources trends in Middle East and North Africa towards 2050. Hydrol Earth Syst Sci 16(9):3101–3114.  https://doi.org/10.5194/hess-16-3101-2012 CrossRefGoogle Scholar
  12. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for environmental prediction operational mesoscale Eta model. J Geophys Res 108(D22):8851.  https://doi.org/10.1029/2002JD003296 CrossRefGoogle Scholar
  13. Fantini A, Raffaele F, Torma C, Bacer S, Coppola E, Giorgi F, Verdecchia M (2016) Assessment of multiple daily precipitation statistics in ERA-interim driven Med-CORDEX and EURO-CORDEX experiments against high resolution observations. Clim Dyn.  https://doi.org/10.1007/s00382-016-3453-4
  14. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(8):L08707.  https://doi.org/10.1029/2006GL025734 CrossRefGoogle Scholar
  15. Giorgi F, Torma C, Coppola E, Ban N, Schär C, Somot S (2016) Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat Geosci 9(8):584–589.  https://doi.org/10.1038/ngeo2761 CrossRefGoogle Scholar
  16. Hagemann S, Chen C, Clark DB, Folwell S, Gosling SN, Haddeland I, Hanasaki N, Heinke J, Ludwig F, Voss F, Wiltshire AJ (2013) Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst Dynam 4(1):129–144.  https://doi.org/10.5194/esd-4-129-2013 CrossRefGoogle Scholar
  17. Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99.  https://doi.org/10.13031/2013.26773 CrossRefGoogle Scholar
  18. Hartmann J, Moosdorf N (2012) The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem Geophys Geosyst 13:Q12004.  https://doi.org/10.1029/2012GC004370 CrossRefGoogle Scholar
  19. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new highresolution climate change projections for European impact research. Reg Environ Chang 14(2):563–578.  https://doi.org/10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  20. Joint Research Centre (2003) Global land cover 2000 database, European commission, joint research centre. Available at: http://www.forobsjrceceuropaeu/products/glc2000/glc2000php. Last access 3 Feb 2017
  21. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen JQ, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Mon-tagnani L, Mu QZ, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954.  https://doi.org/10.1038/nature09396 CrossRefGoogle Scholar
  22. Kingston DG, Todd MC, Taylor RG, Thompson JR, Arnell NW (2009) Uncertainty in the estimation of potential evapotranspiration under climate change. Geophys Res Lett 36(20):L20403.  https://doi.org/10.1029/2009GL040267 CrossRefGoogle Scholar
  23. Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on european scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7(4):1297–1333.  https://doi.org/10.5194/gmd-7-1297-2014 CrossRefGoogle Scholar
  24. Kupiainen M, Samuelsson P, Jones C, Jansson C, Willén U, Hansson U, Ullerstig A, Wang S, Döscher R (2011) Rossby Centre regional atmospheric model, RCA4. Rossby Centre NewsletterGoogle Scholar
  25. Leduc C, Ben Ammar S, Favreau G, Beji R, Virrion R, Lacombe G, Tarhouni J, Aouadi C, Zenati Chelli B, Jebnoun N, Oi M, Michelot JL, Zouari K (2007) Impacts of hydrological changes in the Mediterranean zone: environmental modifications and rural development in the Merguellil catchment, central Tunisia. Hydrol Sci J 52(6):1162–1178.  https://doi.org/10.1623/hysj.52.6.1162 CrossRefGoogle Scholar
  26. Lehner B, Liermann CR, Revenga C, Vörösmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rodel R, Sindorf N, Wisser D (2011) High-resolution mapping of the World's reservoirs and dams for Sustainable River-flow management. Front Ecol Environ 9(9):494–502.  https://doi.org/10.1890/100125 CrossRefGoogle Scholar
  27. Lespinas F, Ludwig W, Heussner S (2014) Hydrological and climatic uncertainties associated with modeling the impact of climate change on water resources of small Mediterranean coastal rivers. J Hydrol 511:403–422.  https://doi.org/10.1016/j.jhydrol.2014.01.033 CrossRefGoogle Scholar
  28. Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu J, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. Int J Remote Sens 21(6-7):1303–1330.  https://doi.org/10.1080/014311600210191 CrossRefGoogle Scholar
  29. Marchane A, Tramblay Y, Hanich L, Ruelland D, Jarlan L (2017) Climate change impacts on surface water resources in the Rheraya catchment (high-atlas, Morocco). Hydrol Sci J 62(6):979–995.  https://doi.org/10.1080/02626667.2017.1283042 CrossRefGoogle Scholar
  30. Mariotti A, Pan Y, Zeng N, Alessandri A (2015) Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim Dyn 44(5-6):1437–1456.  https://doi.org/10.1007/s00382-015-2487-3 CrossRefGoogle Scholar
  31. Masson V, Champeaux JL, Chauvin F, M’eriguet C, Lacaze R (2003) A global database of land surface parameters at 1 km resolution for use in meteorological and climate models. J Clim 16(9):1261–1282.  https://doi.org/10.1175/1520-0442-16.9.1261 CrossRefGoogle Scholar
  32. Milano M, Ruelland D, Fernandez S, Dezetter A, Fabre J, Servat E (2012) Facing global changes in the Mediterranean basin: how could the current water stress evolve by the medium-term? Compt Rendus Geosci 344(9):432–440.  https://doi.org/10.1016/j.crte.2012.07.006 CrossRefGoogle Scholar
  33. Milly PCD, Dunne A (2011) On the hydrologic adjustment of climate-model projections: the potential pitfall of potential evapotranspiration. Earth Interact 15(1):1–14.  https://doi.org/10.1175/2010EI363.1 CrossRefGoogle Scholar
  34. Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water available in a changing climate. Nature 438(7066):347–350.  https://doi.org/10.1038/nature04312 CrossRefGoogle Scholar
  35. Prein AF, Gobiet A, Truhetz H, Keuler K, Goergen K, Teichmann C, Fox Maule C, van Meijgaard E, Déqué M, Nikulin G, Vautard R, Colette A, Kjellström E, Jacob D (2015) Precipitation in the EURO-CORDEX 011∘ simulations: high resolution, high benefits? Clim Dyn 46(1-2):383–412.  https://doi.org/10.1007/s00382-015-2589-y CrossRefGoogle Scholar
  36. Prudhomme C, Williamson J (2013) Derivation of RCM-driven potential evapotranspiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections. Hydrol Earth Syst Sci 17(4):1365–1377.  https://doi.org/10.5194/hess-17-1365-2013 CrossRefGoogle Scholar
  37. Prudhomme C, Giuntoli I, Robinson EL, Clark DB, Arnell NW, Dankers R, Fekete BM, Franssen W, Gerten D, Gosling SN, Hagemann S, Hannah DM, Kim H, Masaki Y, Satoh Y, Stacke T, Wada Y, Wisser D (2014) Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. PNAS 111(9):3262–3267.  https://doi.org/10.1073/pnas1222473110 CrossRefGoogle Scholar
  38. Rockel B, Will A, Hense A (2008) Special issue regional climate modelling with COSMO-CLM (CCLM). Meteorol Z 17(4):347–348.  https://doi.org/10.1127/0941-2948/2008/0309 CrossRefGoogle Scholar
  39. Romera R, Sánchez E, Domínguez M, Gaertner MÁ, Gallardo C (2015) Evaluation of present-climate precipitation in 25 km resolution regional climate model simulations over Northwest Africa. Clim Res 66(2):125–139.  https://doi.org/10.3354/cr01330 CrossRefGoogle Scholar
  40. Ruelland D, Hublart P, Tramblay Y (2015) Assessing uncertainties in climate change impacts on runoff in Western Mediterranean basins. Proc. IAHS 371:75–81.  https://doi.org/10.5194/piahs-371-75-2015 CrossRefGoogle Scholar
  41. Samuelsson P, Gollvik S, Ullerstig A (2006) The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3). SMHI Rep Met 122:25Google Scholar
  42. Samuelsson P, Jones C, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby centre regional climate model RCA3: model description and performance. Tellus A 63(1):4–23.  https://doi.org/10.1111/j.1600-0870.2010.00478.x CrossRefGoogle Scholar
  43. Sanchez-Gomez E, Somot S, Mariotti A (2009) Future changes in the Mediterranean water budget projected by an ensemble of regional climate models. Geophys Res Lett 36(21):L21401.  https://doi.org/10.1029/2009GL040120 CrossRefGoogle Scholar
  44. Schilling J, Freier KP, Hertig E, Scheffran J (2012) Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agriculture, Ecosyst Environ 156:12–26.  https://doi.org/10.1016/j.agee.2012.04.021 CrossRefGoogle Scholar
  45. Seif-Ennasr M, Zaaboul R, Hirich A, Caroletti GN, Bouchaou L, El Morjani ZE, Beraaouz EH, McDonnell RA, Choukr-Allah R (2016) Climate change and adaptive water management measures in Chtouka Aït Baha region (Morocco). Sci Total Environ 573:862–875.  https://doi.org/10.1016/j.scitotenv.2016.08.170 CrossRefGoogle Scholar
  46. Sellami H, Benabdallah S, La Jeunesse I, Vanclooster M (2016) Quantifying hydrological responses of small Mediterranean catchments under climate change projections. Sci Total Environ 543:924–936CrossRefGoogle Scholar
  47. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci Rev 99(3-4):125–161.  https://doi.org/10.1016/j.earscirev.2010.02.004 CrossRefGoogle Scholar
  48. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Duda DMBMG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical note 475Google Scholar
  49. Tabari H, Hosseinzadeh Talaee P (2014) Sensitivity of evapotranspiration to climatic change in different climates. Glob Planet Chang 115:16–23.  https://doi.org/10.1016/j.gloplacha.2014.01.006 CrossRefGoogle Scholar
  50. Terink W, Immerzeel WW, Droogers P (2013) Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050. Int J Climatol 33(14):3055–3072.  https://doi.org/10.1002/joc3650 CrossRefGoogle Scholar
  51. Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain—precipitation over the Alps. J Geophys Res-Atmos 120(9):3957–3972.  https://doi.org/10.1002/2014JD022781 CrossRefGoogle Scholar
  52. Tramblay Y, El Adlouni S, Servat E (2013a) Trends and variability in extreme precipitation indices over North Africa. Nat Hazards Earth Syst Sci 13(12):3235–3248.  https://doi.org/10.5194/nhess-13-3235-2013 CrossRefGoogle Scholar
  53. Tramblay Y, Ruelland D, Somot S, Bouaicha R, Servat E (2013b) High-resolution med-CORDEX regional climate model simulations for hydrological impact studies: a first evaluation of the ALADIN-climate model in Morocco. Hydrol Earth Syst Sci 17(10):3721–3739.  https://doi.org/10.5194/hess-17-3721-2013 CrossRefGoogle Scholar
  54. van Meijgaard E, Van Ulft LH, Lenderink G, de Roode SR, Wipfler L, Boers R, Timmermans RMA (2012) Refinement and application of a regional atmospheric model for climate scenario calculations of Western Europe. Climate changes spatial planning publication: KvR 054/12, ISBN/EAN 978-90-8815-046-3, pp 44Google Scholar
  55. Vicente-Serrano SM, Azorin-Molina C, Sanchez-Lorenzo A, Revuelto J, Morán-Tejeda E, López-Moreno JI, Espejo F (2014) Sensitivity of reference evapotranspiration to changes in meteorological parameters in Spain (1961–2011). Water Resour Res 50(11):8458–8480.  https://doi.org/10.1002/2014WR015427 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.HSM (IRD, CNRS, University of Montpellier)MontpellierFrance
  2. 2.CESBIO (IRD, CNES, CNRS, University Paul Sabatier)ToulouseFrance
  3. 3.Faculté de Sciences et TechniquesUniversité Cadi AyyadMarrakeshMorocco
  4. 4.CNRM (Météo France, CNRS)ToulouseFrance

Personalised recommendations