Water Resources Management

, Volume 31, Issue 11, pp 3491–3505 | Cite as

Long-Term Spatio-Temporal Variation in Runoff Curve Number under Consistent Cover Conditions: a Southeastern US Case Study

  • D. R. EdwardsEmail author


Runoff, erosion and pollutant transport are influenced by spatial and temporal variation in soil hydraulic properties. Hydrologic models contain parameters that are related to these properties. Model parameters can be anticipated to exhibit similar variation which, when characterized, can improve runoff estimates. This study used plot-scale data from a 0.07 ha grassed study area in the southeastern US to characterize spatio-temporal variation in the NRCS curve number (CN) parameter. Based on over 200 rainfall-runoff data pairs collected over a 19-year period, CN exhibited highly variable (coefficient of variation up to 0.54) spatial behavior. Within-plot variation also demonstrated discernible spatial structure, with high variation associated with low CN. While preserving some similarities, spatial structure of CN and connectedness of regions of similar CN varied with runoff event date. Temporal trends were detected, with some regions demonstrating increasing trends and others decreasing. Rainfall-runoff plot characteristics and experimental protocols were consistent during the period of data collection; based on spatial distribution of CN values and trends as well as observation, traffic patterns and mammalian bioturbation are hypothesized as major sources of observed spatio-temporal CN variation.


Curve number Spatial variation Temporal variation Bioturbation 


  1. Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment. Part 1, model development. J Am Water Resour Assoc 34:73–89. doi: 10.1111/j.1752-1688.1998.tb05961.x CrossRefGoogle Scholar
  2. Barrios M, Frances F (2012) Spatial scale effect on the upper soil effective parameters of a distributed hydrological model. Hydrol Process 26:1022–1033. doi: 10.1002/hyp.8193 CrossRefGoogle Scholar
  3. Bonta JV (1998) Spatial variability of runoff and soil properties on small watersheds in similar soil-map units. Trans ASBAE 41:575–585. doi: 10.13031/2013.17225 CrossRefGoogle Scholar
  4. Busheé EL, Edwards DR, Moore PA Jr (1998) Quality of runoff from plots treated with municipal sludge and horse bedding. Trans ASABE 41:1035–1041. doi: 10.13031/2013.17266 CrossRefGoogle Scholar
  5. Cao H, Vervoort RW, Dabney S (2011) Variation in curve numbers derived from plot runoff data for new South Wales (Australia). Hydrol Process 25:3774–3798. doi: 10.1002/hyp.8102 CrossRefGoogle Scholar
  6. Chin DA (2016) Designing bioretention areas for stormwater management. Environmental Processes. doi: 10.1007/s40710-016-0200-0 Google Scholar
  7. Easton ZM (2013) Defining spatial heterogeneity of hillslope infiltration characteristics using geostatistics, error modeling and autocorrelation analysis. J Irrig Drain Eng 139:718–727. doi: 10.1061/(ASCE)IR.1943-4774.0000602 CrossRefGoogle Scholar
  8. Elhakeem M, Papanicolaou AN (2009) Estimation of the runoff curve number via direct rainfall simulator measurements in the state of Iowa, USA. Water Resour Manag 23:2455–2473. doi: 10.1007/s11269-008-9390-1 CrossRefGoogle Scholar
  9. Feldman AD (ed) (2000) Hydrological modeling system HEC-HMS. Technical reference manual. Hydrologic engineering center, U.S. Davis, Army Corps of EngineersGoogle Scholar
  10. Gburek WJ, Sharpley AN (1998) Hydrologic controls on phosphorus loss from upland agricultural watersheds. J Environ Qual 27:267–277. doi: 10.2134/jeq1998.00472425002700020005x CrossRefGoogle Scholar
  11. Granato GE (2006) Kendall-Theil robust line (KTRLine – version 1.0) – a visual basic program for calculating and graphing robust nonparametric estimates of linear-regression coefficients between two continuous variables. Techniques and methods of the U.S. Geological Survey, book 4, chap. A7, 31 pp. U.S. Geological Survey, Reston.Google Scholar
  12. Gupta N, Rudra RP, Parkin G (2006) Analysis of spatial variability of hydraulic conductivity at field scale. Can Biosyst Eng 48:55–62Google Scholar
  13. Haan CT, Edwards DR (1988) Joint probability estimates of return period flows. Trans ASAE 31(4):1115–1119Google Scholar
  14. Hajihosseini H, Hajihosseini M, Morid S, Delevar M, Booij MJ (2016) Hydrological assessment of the 1973 treaty on the transboundary Helmand River, using the SWAT model and a global climate database. Water Resour Manag 30:4681–4694. doi: 10.1007/s11269-016-1447-y CrossRefGoogle Scholar
  15. Hjelmfelt AT Jr, Burwell RE (1984) Spatial variability of runoff. J Irrig Drain Eng 110:46–54. doi: 10.1061/(ASCE)0733-9437(1984)110:1(46) CrossRefGoogle Scholar
  16. Hollander M, Wolfe DA (1999) Nonparametric statistical methods, 2nd edn. Wiley, New York, pp 415–457Google Scholar
  17. Huffman RL, Fangmeier DD, Elliott WJ, Workman SR (2013) Soil and water conservation engineering, 7th edn. St. Joseph, American Society of Agricultural and Biological EngineersCrossRefGoogle Scholar
  18. Jain MKI, Mishra SK, Babu PS, Venugopal K, Singh VP (2006) Enhanced runoff curve number model incorporating storm duration and a nonlinear Ia-S relation. J Hydrol Eng 11:631–635. doi: 10.1061/(ASCE)1084-0699(2006)11:6(631) CrossRefGoogle Scholar
  19. Korres W, Schneider K, Reichnau TG (2013) Patterns and scaling properties of surface soil moisture in an agricultural landsape: an ecohydrological modeling study. J Hydrol 498:89–102. doi: 10.1016/j.jhydrol.2013.05.050 CrossRefGoogle Scholar
  20. Leitinger G, Obojes N, Tappeiner U, Tasser E, Newesely C (2010) Seasonal dynamics of surface runoff in mountain grassland ecosystems differing in land use. J Hydrol 385:95–104. doi: 10.1016/j.jhydrol.2010.02.006 CrossRefGoogle Scholar
  21. Logsdon SD, Jaynes DB (1996) Spatial variability of hydraulic conductivity in a cultivated field at different times. Soil Sci Soc Am J 60:703–709. doi: 10.2136/sssaj1996.03615995006000030003x CrossRefGoogle Scholar
  22. Merz B, Plate EJ (1997) An analysis of the effects of spatial variability of soil and soil moisture on runoff. Water Resour Res 33:2909–2922. doi: 10.1029/97WR02204 CrossRefGoogle Scholar
  23. Narsimlu B, Gosain AK, Charhar BR, Sing SK, Srivastava PK (2015) SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari Riverbasin, India, using sequential uncertainty fitting. Environmental Processes 2:79–95. doi: 10.1007/s40710-015-0064-8 CrossRefGoogle Scholar
  24. NRCS (Natural Resources Conservation Service) (1986) Urban hydrology for small watersheds. Technical release 55. U.S. Department of Agriculture, Washington, DCGoogle Scholar
  25. Rienzner M, Gandolfi C (2014) Investigation of spatial and temporal variability of saturated soil hydraulic conductivity at the field scale. Soil Tillage Res 135:28–40. doi: 10.1016/j.still.2013.08.012 CrossRefGoogle Scholar
  26. Risse LM, Zhang XC, Nearing MA (1995) Variability in green-Ampt effective hydraulic conductivity under fallow conditions. J Hydrol 169:1–24. doi: 10.1016/0022-1694(94)02676-3 CrossRefGoogle Scholar
  27. Schneiderman EM, Steenhuis TS, Thongs DJ, Easton ZM, Zion MS, Neal AL, Mendoza GF, Walter MT (2007) Incorporating variable source area hydrology into a curve-number-based watershed model. Hydrol Process 21:3420–3430. doi: 10.1002/hyp.6556 CrossRefGoogle Scholar
  28. Sen S, Srivastava P, Dane JH, Yoo JH, Shaw JN (2010) Spatial-temporal variability and hydrologic connectivity of runoff generation areas in a North Alabama pasture – implications for phosphorus transport. Hydrol Process 24:342–356. doi: 10.1002/hyp.7502 CrossRefGoogle Scholar
  29. Simanton JR, Renard KG, Mohseni-Saravi M, Hawkins RH (1996) Runoff curve number variation with drainage area, walnut gulch, Arizona. Trans ASABE 39:1391–1394. doi: 10.13031/2013.27630 CrossRefGoogle Scholar
  30. Smallwood KS, Morrison ML, Beyea J (1998) Animal burrowing attributes affecting hazardous waste management. J Environ Manag 22:831–847. doi: 10.1007/s002679900151 CrossRefGoogle Scholar
  31. Soil Survey Staff (2016) Web soil Survey. Natural Resources Conservation Service, United States Department of Agriculture, Washington, DC. Available online at Accessed 14 April 2016
  32. Soulis JX, Valiantzas JD (2013) Identification of the SCS-CN parameter spatial distribution using rainfall-runoff data in heterogeneous watersheds. Water Resour Manag 27:1737–1749. doi: 10.1007/s11269-012-0082-5 CrossRefGoogle Scholar
  33. Tessema SM, Lyon SW, Setegn SG, Moortberg U (2014) Effects of different retention parameter estimation methods on the prediction of surface runoff using the SCS curve number method. Water Resour Manag 28:3241–3254. doi: 10.1007/s11269-014-0674-3 CrossRefGoogle Scholar
  34. Theil H (1950) A rank-invariant method of linear and polynomial regression analysis, I. Proc Royal Netherlands Acad Sci 53:386–392. doi: 10.1007/978-94-011-2546-8_20 Google Scholar
  35. Ward AD, Elliott WJ (1995) Environmental hydrology. CRC press, Inc, Boca Raton, pp 133–175Google Scholar
  36. Whelan BM, McBratney AB, Minasny B (2002) Vesper 1.5 – spatial prediction software for precision agriculture. In: Robert PC, Rust RH, Larson WE (eds) Proceedings of the 6th international conference on precision agriculture. ASA/CSSA/SSSA, Madison, 14pGoogle Scholar
  37. Wood EF, Sivapalan M, Beven K, Band L (1988) Effects of spatial variability and scale with implications to hydrologic modeling. J Hydrol 102:29–47. doi: 10.1016/0022-1694(88)90090-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Biosystems and Agricultural EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations