Advertisement

Water Resources Management

, Volume 31, Issue 1, pp 61–73 | Cite as

Why Should Practitioners be Concerned about Predictive Uncertainty of Groundwater Management Models?

  • H. DelottierEmail author
  • A. Pryet
  • A. Dupuy
Article

Abstract

Numerical models are now commonly used to define guidelines for the sustainable management of groundwater resources. Despite significant advances in inverse modeling and uncertainty analysis, most of groundwater management models are still calibrated by manual trial and error and disregard predictive uncertainty. There is a gap between recent advances in inverse modeling and current practices in operational groundwater modeling. The disinterest of water practitioners for this issue can be explained by unawareness, lack of relevant and reliable datasets, difficulties of implementation and prohibitive computation times. The purpose of this study is to convince water practitioners and water managers that uncertainty analysis is not just a smart, optional add-on to a groundwater model, but rather a critical and necessary step. So as to broaden the audience of this paper out of the community of specialists, we use a simple didactic illustration and propose realistic, practical solutions. Based on a synthetic model, we highlight that if we follow common practices (parameter calibration solely against observed groundwater heads), our knowledge of the unknown parameters is not sufficient to constrain the predicted value of interest (the sustainable yield). This is a critical issue since management models are likely to be used for the design of legal frameworks. After this illustration, we argue that calibration algorithms should become a routine process to bring the uncertainty analysis to the forefront. We promote the use of a linear uncertainty analysis as a diagnostic tool for large real world groundwater management models. When uncertainty is high, stakeholders should encourage the collection of multiple data sets to expand the calibration data set and gather prior information on parameter values.

Keywords

Groundwater Sustainable management Predictive uncertainty Inverse modeling Calibration 

Notes

Acknowledgments

The authors wish to thank professor Ty Ferré (Darcy lecturer 2016) for bringing valuable feedback. We also thank the anonymous reviewers and the associate editor for their valuable remarks. Finally, we wish to thank practitioners and water managers for their availability and relevant discussions. Henry Pellizzaro for the Conseil Départemental des Pyrénées Atlantique. Nicola Pédron, Olivier Cabaret, Marc Saltel and Arnaud Wuilleumier for the Bureau de Recherche Géologique et Miniére (BRGM) of Pessac. Pierre Marchet, Catherine Grange and Manuella Broussey for the Agence de l’eau Adour Garonne. Michel Fargeot for the Lyonnaise des eaux. Bruno De Grissac for the Syndicat Mixte d’Etudes et de Gestion de la Ressource en eau du Département de la Gironde. Caroline Sandner for the Institution Interdépartementale du Bassin de la Sèvre Niortaise.

References

  1. Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci 5(12):853–861CrossRefGoogle Scholar
  2. Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 42(1):12–16CrossRefGoogle Scholar
  3. Aster RC, Borchers B, Thurber CH (2013) Parameter estimation and inverse problems. Academic PressGoogle Scholar
  4. Bakker M, Post V, Hughes J, Langevin C, Francés A, White J (2013) Enhanced FloPy scripts for constructing and running MODFLOW-based models. In: Proceedings of the 2013 MODFLOW and More ConferenceGoogle Scholar
  5. Barlow PM, Ahlfeld DP, Dickerman DC (2003) Conjunctive-management models for sustained yield of stream-aquifer systems. J Water Resour Plan Manag 129 (1):35–48CrossRefGoogle Scholar
  6. Boronina A, Renard P, Balderer W, Christodoulides A (2003) Groundwater resources in the kouris catchment (cyprus): data analysis and numerical modelling. J Hydrol 271(1):130–149CrossRefGoogle Scholar
  7. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40(4):340–345CrossRefGoogle Scholar
  8. Brunner P, Doherty J, Simmons CT (2012) Uncertainty assessment and implications for data acquisition in support of integrated hydrologic models. Water Resour Res 48(7)Google Scholar
  9. Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13(1):206–222CrossRefGoogle Scholar
  10. Christensen S, Doherty J (2008) Predictive error dependencies when using pilot points and singular value decomposition in groundwater model calibration. Adv Water Resour 31(4):674–700CrossRefGoogle Scholar
  11. Cousquer Y, Pryet A, Flipo N, Delbart C, Dupuy A (2016) Estimating River Conductance from Prior Information to Improve Surface-Subsurface Model Calibration. Ground Water, accepted with minor revisionsGoogle Scholar
  12. Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10 (2):254–277CrossRefGoogle Scholar
  13. Doherty J (2015) Calibration and uncertainty analysis for complex environmental models - PEST: complete theory and what it means for modelling the real world. Watermark Numerical Computing, Brisbane, AustraliaGoogle Scholar
  14. Doherty J (2016a) PEST: Model-independent parameter estimation. User Manual Part 1: PEST, SENSAN and Global Optimisers - 6th Edition published in 2016. http://www.pesthomepage.org/Downloads.php, watermark numerical computing, brisbane, australia edn
  15. Doherty J (2016b) PEST: Model-independent parameter estimation. User Manual Part 2: PEST Utility Support Software - 6th Edition published in 2016. http://www.pesthomepage.org/Downloads.php, watermark numerical computing, brisbane, australia edn
  16. Doherty J, Hunt RJ (2009) Two statistics for evaluating parameter identifiability and error reduction. J Hydrol 366(1):119–127CrossRefGoogle Scholar
  17. Doherty J, Skahill BE (2006) An advanced regularization methodology for use in watershed model calibration. J Hydrol 327(3):564–577CrossRefGoogle Scholar
  18. Döll P, Fiedler K (2007) Global-scale modeling of groundwater recharge. Hydrol Earth Syst Sci Discuss Discuss 4(6):4069–4124CrossRefGoogle Scholar
  19. Esteller MV, Diaz-Delgado C (2002) Environmental effects of aquifer overexploitation: a case study in the highlands of mexico. Environ Manag 29(2):266–278CrossRefGoogle Scholar
  20. Fienen MN, Doherty JE, Hunt RJ, Reeves HW (2010) Using prediction uncertainty analysis to design hydrologic monitoring networks: Example applications from the Great Lakes Water Availability Pilot Project - Appendix 1. Tech. rep., US Geological SurveyGoogle Scholar
  21. Franssen HH, Alcolea A, Riva M, Bakr M, Van der Wiel N, Stauffer F, Guadagnini A (2009) A comparison of seven methods for the inverse modelling of groundwater flow. Application to the characterisation of well catchments. Adv Water Resour 32(6):851–872CrossRefGoogle Scholar
  22. Gallagher M, Doherty J (2007) Predictive error analysis for a water resource management model. J Hydrol 334(3):513–533CrossRefGoogle Scholar
  23. Harbaugh AW (2005) MODFLOW-2005, the US Geological Survey modular ground-water model: The ground-water flow process. US Department of the Interior, US Geological SurveyGoogle Scholar
  24. Harou JJ, Lund JR (2008) Representing groundwater in water management models - Applications in California. Tech. rep., California Energy Commission, PIER Energy–Related Environmental Research Program, CEC-500-2008-092, University of California, Davis, CA, EUAGoogle Scholar
  25. Herckenrath D, Langevin CD, Doherty J (2011) Predictive uncertainty analysis of a saltwater intrusion model using null-space monte carlo. Water Resour Res 47(5)Google Scholar
  26. Hill MC (1992) A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional ground-water flow model using nonlinear regression. Tech. rep., US Geological SurveyGoogle Scholar
  27. Hill MC (1998) Methods and guidelines for effective model calibration. US Geological Survey Denver, CO, USAGoogle Scholar
  28. Hill MC, Kavetski D, Clark M, Ye M, Arabi M, Lu D, Foglia L, Mehl S (2015) Practical use of computationally frugal model analysis methods. GroundwaterGoogle Scholar
  29. Hunt RJ, Feinstein DT, Pint CD, Anderson MP (2006) The importance of diverse data types to calibrate a watershed model of the Trout Lake Basin, Northern Wisconsin, USA. J Hydrol 321(1):286– 296CrossRefGoogle Scholar
  30. Hunt RJ, Doherty J, Tonkin MJ (2007) Are models too simple? Arguments for increased parameterization. Ground Water 45(3):254–262CrossRefGoogle Scholar
  31. Jakeman A, Barreteau O, Hunt RJ, Rinaudo JD, Ross A (2016) Integrated Groundwater Management. SpringerGoogle Scholar
  32. James SC, Doherty JE, Eddebbarh AA (2009) Practical postcalibration uncertainty analysis: Yucca Mountain, Nevada. Groundwater 47(6):851–869CrossRefGoogle Scholar
  33. Juckem PF, Coalition RR (2009) Simulation of the Regional Ground-water-flow System and Ground-water/surface-water Interaction in the Rock River Basin, Wisconsin. US Geological SurveyGoogle Scholar
  34. Kendy E (2003) The false promise of sustainable pumping rates. Ground Water 41(1):2–4CrossRefGoogle Scholar
  35. Konikow LF (2015) Long-Term Groundwater Depletion in the United States. Groundwater 53(1):2–9CrossRefGoogle Scholar
  36. Konikow LF, Bredehoeft JD (1992) Ground-water models cannot be validated. Adv Water Resour 15(1):75–83CrossRefGoogle Scholar
  37. Leake S, Hoffmann J, Dickinson JE (2005) Numerical Ground-Water Change Model of the C Aquifer and Effects of Ground-Water Withdrawals on Stream Depletion in Selected Reaches of Clear Creek, Chevelon Creek, and the Little Colorado River, Northeastern Arizona. US Geol Surv Sci Investig Rep 5277:29Google Scholar
  38. Ledoux E, Girard G, Villeneuve J (1984) Proposition d’un modèle couplé pour la simulation conjointe des écoulements de surface et des écoulements souterrains sur un bassin hydrologique. La houille blanche 1-2(1-2):101–120CrossRefGoogle Scholar
  39. Liu G, Wilson B, Whittemore D, Liu G et al (2010) Ground-water model for Southwest Kansas Groundwater Management District no 3. Kansas Geol Surv Open-File Rep:18Google Scholar
  40. Manghi F, Williams D, Safely J, Hamdi MR (2012) Groundwater flow modeling of the Arlington basin to evaluate management strategies for expansion of the Arlington desalter water production. Water Resour Manag 26(1):21–41CrossRefGoogle Scholar
  41. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441CrossRefGoogle Scholar
  42. de Marsily G (2008) Eau, changements climatiques, alimentation et évolution démographique. Revue des sciences de l’eau:/J Water Sci Technol 21(2):111–128CrossRefGoogle Scholar
  43. Michael HA, Voss CI (2008) Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. Proc Natl Acad Sci 105(25):8531–8536CrossRefGoogle Scholar
  44. Montazar A, Riazi H, Behbahani S (2010) Conjunctive water use planning in an irrigation command area. Water Resour Manag 24(3):577–596CrossRefGoogle Scholar
  45. Moore C, Wöhling T, Wolf L (2011) Optimisation of monitoring data for increased predictive reliability of regional water allocation models. In: 19th International Congress on Modelling and Simulation, Perth, Australia p Mooreetal2011Google Scholar
  46. Muleta MK, Nicklow JW (2005) Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. J Hydrol 306(1):127–145CrossRefGoogle Scholar
  47. Mylopoulos N, Mylopoulos Y, Tolikas D, Veranis N (2007) Groundwater modeling and management in a complex lake-aquifer system. Water Resour Manag 21 (2):469–494CrossRefGoogle Scholar
  48. Pappenberger F, Beven KJ (2006) Ignorance is bliss: Or seven reasons not to use uncertainty analysis. Water Resour Res 42(5)Google Scholar
  49. Pérez-Martín MA, Estrela T, Andreu J, Ferrer J (2014) Modeling water resources and river - aquifer interaction in the Júcar River Basin, Spain. Water Resour Manag 28(12):4337–4358CrossRefGoogle Scholar
  50. Pierce SA, Sharp JM, Guillaume JH, Mace RE, Eaton DJ (2013) Aquifer-yield continuum as a guide and typology for science-based groundwater management. Hydrogeol J:1–10Google Scholar
  51. Poeter EP, Hill MC (1997) Inverse models: A necessary next step in ground-water modeling. Ground Water 35(2):250–260CrossRefGoogle Scholar
  52. Poeter EP, Hill MC (1998) Documentation of UCODE, a computer code for universal inverse modeling. DIANE PublishingGoogle Scholar
  53. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57CrossRefGoogle Scholar
  54. Pryet A, Atteia O, Delottier H, Cousquer Y (2015) Flexible Environmental Modeling with Python and Open-GIS. In: EGU General Assembly Conference Abstracts, vol 17, p 9733Google Scholar
  55. Pulido-Velázquez M, Andreu J, Sahuquillo A (2006) Economic optimization of conjunctive use of surface water and groundwater at the basin scale. J Water Resour Plan Manag 132(6):454–467CrossRefGoogle Scholar
  56. QGIS (2015) Geographic information system. open source geospatial foundation project [online]. available at: http://qgis.osgeo.org
  57. Rejani R, Jha MK, Panda S, Mull R (2008) Simulation modeling for efficient groundwater management in Balasore Coastal Basin, India. Water Resour Manag 22 (1):23–50CrossRefGoogle Scholar
  58. Rushton K (2007) Representation in regional models of saturated river–aquifer interaction for gaining/losing rivers. J Hydrol 334(1):262–281CrossRefGoogle Scholar
  59. Safavi HR, Darzi F, Mariño M A (2010) Simulation-optimization modeling of conjunctive use of surface water and groundwater. Water Resour Manag 24(10):1965–1988CrossRefGoogle Scholar
  60. Saiers JE, Genereux DP, Bolster CH (2004) Influence of calibration methodology on ground water flow predictions. Groundwater 42(1):32–44CrossRefGoogle Scholar
  61. Saltel M, Pédron N (2012) Contribution à la révision du SAGE Nappes Profondes de Gironde, Utilisation du MOdèle Nord-Aquitain - phase ”Tendances et Scénarios. Tech. rep., brmgGoogle Scholar
  62. Schoups G, Addams CL, Minjares JL, Gorelick SM (2006) Sustainable conjunctive water management in irrigated agriculture: Model formulation and application to the Yaqui Valley, Mexico. Water Resour Res 42(10)Google Scholar
  63. Sedki A, Ouazar D (2011) Simulation-optimization modeling for sustainable groundwater development: a Moroccan coastal aquifer case study. Water Resour Manag 25(11):2855–2875CrossRefGoogle Scholar
  64. Seibert J, McDonnell JJ (2002) On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration. Water Resour Res 38(11):23–1CrossRefGoogle Scholar
  65. Sepúlveda N, Doherty J (2014) Uncertainty Analysis of a Groundwater Flow Model in East-Central Florida. GroundwaterGoogle Scholar
  66. Sepulveda N, Tiedeman CR, O’Reilly AM, Davis JB, Burger P (2012) Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida. Tech. rep., US Geological SurveyGoogle Scholar
  67. Siade A, Nishikawa T, Martin P (2015) Natural recharge estimation and uncertainty analysis of an adjudicated groundwater basin using a regional-scale flow and subsidence model (Antelope Valley, California, USA). Hydrogeol J 23(6):1267–1291CrossRefGoogle Scholar
  68. Singh A (2014) Groundwater resources management through the applications of simulation modeling: A review. Sci Total Environ 499:414–423CrossRefGoogle Scholar
  69. Sophocleous M (2000) From safe yield to sustainable development of water resources. The Kansas experience. J Hydrol 235(1):27–43CrossRefGoogle Scholar
  70. Stanton GP, Clark BR (2003) Recalibration of a Ground-Water Flow Model of the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas, 1918-98, with Simulations of Hydraulic Heads Caused by Projected Ground-Water Withdrawals through 2049. Tech. rep. U.S. GEOLOGICAL SURVEYGoogle Scholar
  71. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. siamGoogle Scholar
  72. Tikhonov A, Arsenin V (1977) Solutions of ill-posed problems. Vh WinstonGoogle Scholar
  73. Timani B, Peralta R (2015) Multi-model groundwater-management optimization: reconciling disparate conceptual models. Hydrogeol J:1–21Google Scholar
  74. Vidal JP, Martin E, Franchistéguy L, Baillon M, Soubeyroux JM (2010) A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int J Climatol 30(11):1627–1644CrossRefGoogle Scholar
  75. Wada Y, Gleeson T, Esnault L (2014) Wedge approach to water stress. Nat Geosci 7(9):615–617CrossRefGoogle Scholar
  76. Zhang Q, Werner AD (2009) Integrated surface–subsurface modeling of Fuxianhu Lake catchment, Southwest China. Water Resour Manag 23(11):2189–2204CrossRefGoogle Scholar
  77. Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: evolution and recent trends. Adv Water Resour 63:22–37CrossRefGoogle Scholar
  78. Zhou Y (2009) A critical review of groundwater budget myth, safe yield and sustainability. J Hydrol 370(1):207–213CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.EA 4592 Géoressources et EnvironnementBordeaux INP and Univ. Bordeaux Montaigne, ENSEGIDPessacFrance

Personalised recommendations