Advertisement

Water Resources Management

, Volume 30, Issue 13, pp 4513–4527 | Cite as

A Standardized Index for Assessing Seawater Intrusion in Coastal Aquifers: The SITE Index

  • Bruno J. BallesterosEmail author
  • Ignacio Morell
  • Olga García-Menéndez
  • Arianna Renau-Pruñonosa
Article

Abstract

A large number of coastal aquifers worldwide are impacted by seawater intrusion. A major aim of European Directives 2000/60/EC and 2006/118/EC is to achieve good ecological status in groundwater bodies, including coastal aquifers. To this goal, information is needed about the current state of, and changes over time in, individual aquifers. This information can be obtained by applying methods that determine the status of aquifers in an uncomplicated manner. Methods for this type of assessment must comply with three essential criteria. First, calculation of the index must be straightforward and should be based on easy-to-obtain or commonly available data. Next, the index should be able to highlight important characteristics in understandable terms. Finally, the results should be objective and should be expressed in such a way that different time periods and different aquifers can be compared. In this paper we describe the development of a method to characterize seawater intrusion that meets these criteria and is based on four basic parameters: surface area, intensity, temporality, and evolution. Each parameter is determined by specific calculations derived from the groundwater chloride concentrations. Results are specified as a numerical index and an alphanumeric code. This index, known as SITE, has been applied to four Mediterranean coastal aquifers. The standardized results allowed us to discriminate between, and objectively compare the status of these groundwater bodies. Further, this index will make it possible to prioritize management actions and evaluate the effectiveness of these actions over time.

Keywords

Seawater intrusion Coastal aquifers Index Groundwater management 

References

  1. Arslan H, Cemek B, Demir Y (2012) Determination of seawater intrusion via hydrochemicals and isotopes in Bafra plain, Turkey. Water Resour Manag 26(13):3907–3922. doi: 10.1007/s11269-012-0112-3 CrossRefGoogle Scholar
  2. Barrocu G (2003) Seawater intrusion in coastal aquifers in Italy. Coastal Aquifers Intrusion Technology: Mediterranean Countries. IGME (ed). ISBN:84-7840-470-8Google Scholar
  3. Benini L, Antonellini M, Laghi L (2016) Assessment of water resources availability and groundwater salinization in future climate and land use change scenarios: A case study from a coastal drainage basin in Italy. Water Resour Manag 30:731–745. doi: 10.1007/s11269-015-1187-4 CrossRefGoogle Scholar
  4. Cardoso PR (1993) Saline water intrusion in Mexico. In: Transactions on ecology and the environment, vol 2. WIT, Southampton, UK. doi: 10.2495/WP930051
  5. CHJ (2016) (Júcar Water Agency) Júcar River Basin Plan. Demarcación hidrográfica del Júcar. Confederación Hidrográfica del Júcar. Ministry of Agriculture, Food and Environment, SpainGoogle Scholar
  6. Custodio E, Alcalá-García FJ (2003) El potencial de la relación Cl/Br como indicador del origen de la salinidad de los acuíferos costeros españoles. Coastal aquifers intrusion technology: Mediterranean Countries. IGME (ed.) pp:401–412. ISBN:84-7840-470-8Google Scholar
  7. Daessle LW, Pérez-Flores MA, Serrano-Ortiz J (2014) A geochemical and 3D-geometry geophysical survey to assess artificial groundwater recharge potential in the Pacific coast of Baja California, Mexico. Environ Earth Sci 71:3477–3490. doi: 10.1007/s12665-013-2737-9 CrossRefGoogle Scholar
  8. Edet AE, Okereke CS (2001) Monitoring seawater intrusion in the Tertiary-Quaternary aquifer system, Coastal Akwa Ibom area, Southeastern Nigeria-Baseline data. First Int. Conf. Saltwater Intrusion and Coastal AquifersGoogle Scholar
  9. Estrela T, Vargas E (2012) Drought Management Plans in the European Union. The case of Spain. Water Resour Manag 26:1537–1553CrossRefGoogle Scholar
  10. Estrela T, Pérez-Martin MA, Vargas E (2012) Impacts of climate change on water resources in Spain. Hydrol Sci J 201. doi: 10.1080/02626667.2012.702213
  11. European Environment Agency (EEA) (2007) Groundwater overexploitation and saltwater intrusion in EuropeGoogle Scholar
  12. European Union (EU) (2006) Directiva 2006/118/CE del Parlamento Europeo y del Consejo de 12 de Diciembre de 2006. Diario Oficial de las Comunidades Europeas de 27/12/2006. L 327/19–327/31Google Scholar
  13. European Union-Water Framework Directive (EU-WFD) (2000) Directiva 2000/60/CE del Parlamento Europeo y del Consejo de 23 de Octubre de 2000. Diario Oficial de las Comunidades Europeas de 22/12/2000. L 327/1–327/32Google Scholar
  14. FAO (1997) Seawater intrusion in coastal aquifers. Guidelines for study, monitoring and control. 153 pp. ISBN: 92-5-103986-0Google Scholar
  15. García O, Morell I, Ballesteros BJ, Renau-Pruñonosa A, Esteller MV (2016) Spatial characterization of the seawater upconing process in a coastal Mediterranean aquifer (Plana de Castellón, Spain): evolution and controls. Environ Earth Sci 75:728. doi: 10.1007/s12665-016-5531-7 CrossRefGoogle Scholar
  16. Giménez E, Morell I (1997) Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellón, Spain). Environ Geol 29:118–131CrossRefGoogle Scholar
  17. Guhl F, Pulido-Bosch A, Pulido-Leboeuf P, Gisbert J, Sánchez-Martos F, Vallejos A (2006) Geometry and dynamics of the freshwater-seawater interface in a coastal aquifer in Southeastern Spain. Hydrol Sci J 51(3):543–555. doi: 10.1623/hysj.51.3.543 CrossRefGoogle Scholar
  18. Günay G (1997) Solutions of seawater intrusion problems in Turkey. Chap. 15 of Seawater intrusion in coastal aquifers. Guidelines for study, monitoring and control. FAO. 153 pp. ISBN:92-5-103986-0Google Scholar
  19. Kazakis N, Pavlou A, Vargemezis G, Voudouris KS, Soulios G, Pliakas F, Tsokas G (2016) Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece. Sci Total Environ 543:373–387. doi: 10.1016/j.scitotenv.2015.11.041 CrossRefGoogle Scholar
  20. Liu D (2004) The situation and analysis of salinity intrusion in coastal areas, China. J Geol Hazards Environ Preserv. doi: 10.1007/s12665-014-3186-9 Google Scholar
  21. Mandilaras D, Lambrakis N, Stamatis G (2007) The role of bromide and iodide ions in the salinization mapping of the aquifer of Glafkos rives basin (northwest Achaia, Greece). Hydrol Process 22(5):611–622. doi: 10.1002/hyp.6627 CrossRefGoogle Scholar
  22. Morell I (1985) Caracterización hidrogeoquímica de la intrusión marina de la Plana Oropesa-Torreblanca (Prov. Castellón). PhD Thesis.Google Scholar
  23. Morell I, Giménez E, Fagundo JR, Pulido-Bosch A, López-Chicano M, Calvache ML, Rodríguez JE (1997) Hydrochemistry and Karstification in the Cienaga de Zapata aquifer (Matanzas, Cuba). In: Günay, Johnson (eds) Karst waters & environmental impacts. Balkema, Rotterdam, pp. 191–198Google Scholar
  24. Morell I, Pulido-Bosch A, Sánchez-Martos F, Vallejos A, Daniele L, Molina L, Calaforra JM, Roig AF, Renau-Llorens A (2008) Characterization of the salinization processes in aquifers using boron isotopes. Application to south-eastern Spain. Water Air Soil Pollut 187:65–80. doi: 10.1007/s11270-007-9497-7 CrossRefGoogle Scholar
  25. Murillo JM, Navarro JA (1991) Modelo para el cálculo de un índice del estado de intrusión de un acuífero costero. Aplicación a la Plana de Castellón. IGME (ed)Google Scholar
  26. Pérez-Martín MA, Estrela T, Andreu J, Ferrer J (2014) Modeling Water Resources and River-Aquifer Interaction in the Júcar River Basin, Spain. Water Resour Manag 28:4337–4358. doi: 10.1007/s11269-014-0755-3 CrossRefGoogle Scholar
  27. Petalas C, Lambrakis N (2006) Simulation of intense salinization phenomena in coastal aquifers of Thrace. J Hydrol 324:51–64. doi: 10.1016/j.hjydrol.2005.09.031 CrossRefGoogle Scholar
  28. Pratheepa V, Ramesh S, Sukumaran N, Murugesan AG (2015) Identification of the sources for groundwater salinization in the coastal aquifers of Southern Tamil Nadu, India. Environ Earth Sci 74:2819–2829. doi: 10.1007/s12665-015-4303-0 CrossRefGoogle Scholar
  29. Renau-Pruñonosa A, Morell I, Pulido D (2014) Ecological Remediation Volume (ERV) in Coastal Aquifers Affected by Seawater Intrusion. Methodology and Application in the Oropesa-Torreblanca Plain (Spain). Mathematics of Planet Earth (21938571) 521 pp. doi: 10.1007/978-3-642-32408-6_114
  30. Shi L, Jiao JJ (2014) Seawater intrusion and coastal aquifer management in China: a review. Environ Earth Sci 71:2811–2819. doi: 10.1007/s12665-014-3186-9 CrossRefGoogle Scholar
  31. Sivsankar V, Ramachandramoorthy T, Senthil K (2013) Deterioration of coastal groundwater quality in Rameswaram Island of Ramanathapuram District, Southern India. J Water Chem Technol 35:91–98 ISSN 1063455XCrossRefGoogle Scholar
  32. Steyl G, Dennis I (2010) Review of coastal-area aquifers in Africa. Hydrogeol J 18:217–225. doi: 10.1007/s10040-009-0545-9. CrossRefGoogle Scholar
  33. Vallejos A, Sola F, Pulido-bosch A (2015) Processes influencing groundwater level and the freshwater-saltwater interface in a coastal aquifer. Water Resour Manag 29(3):679–697. doi: 10.1007/s11269-014-0621-3 CrossRefGoogle Scholar
  34. Voudouris K, Mandilaras D, Antonakos A (2004) Methods to define the surface distribution of the SALT intrusion zone. 18th SWIMGoogle Scholar
  35. Werner AD, Ward JD, Morgan LK, Simmons CT, Robinson NI, Teubner MD (2012) Vulnerability indicators of sea water intrusion. Ground Water 50(1):48–58CrossRefGoogle Scholar
  36. Werner AD, Bakker M, Post VEA, Vanderboede A, CH L, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management. Recent advances and futures challenges. Adv Water Resour 51:3–26. doi: 10.1016/j.advwatres.2012.03.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Coastal Aquifers Research Group, Geological Survey of SpainValenciaSpain
  2. 2.Coastal Aquifers Research Group, Research Institute for Pesticides and WaterJaume I UniversityCastellón de la PlanaSpain

Personalised recommendations