Advertisement

Water Resources Management

, Volume 30, Issue 13, pp 4483–4499 | Cite as

Research on Combination Forecast Mode of Conceptual Hydrological Model

  • Minglong DaiEmail author
  • Jianzhong ZhouEmail author
  • Xiang Liao
Article
  • 281 Downloads

Abstract

The calibration and selection of conceptual hydrological model parameters is an important but complex task in runoff forecasting. In order to solve the calibration of conceptual hydrological model parameters, a multi-objective cultural self-adaptive electromagnetism-like mechanism algorithm (MOCSEM) is proposed in this paper. The multi-objective parameter calibration method of runoff forecasting avoids the “averaging effect” and considers both large and small runoffs hydrological features. In this paper, the self-identifying parameter combination forecasting method (SPCFM), a universality combination forecast model, is developed innovatively to improve forecasting precision by using the extreme parameters of Pareto optimal solutions. Finally, MOCSEM is combined with SPCFM to calibrate the parameters of forecasting model and forecast runoff of Leaf River. The results indicate that the proposed methods improve forecast accuracy and provide an effective approach to runoff forecast.

Keywords

Conceptual hydrological model Multi-objective optimization Parameter calibration Self-identifying parameters Combination forecast 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51239004).

References

  1. Alikhani MG, Javadian N, Tavakkoli-Moghaddam R (2009) A novel hybrid approach combining electromagnetism-like method with Solis and Wets local search for continuous optimization problems. J Glob Optim 44:227–234CrossRefGoogle Scholar
  2. Bekele EG, Nicklow JW (2007) Multi-objective automatic calibration of SWAT using NSGA-II. J Hydrol 341:165–176. doi: 10.1016/j.jhydrol.2007.05.014 CrossRefGoogle Scholar
  3. Birbil SI, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25:263–282. doi: 10.1023/a:1022452626305 CrossRefGoogle Scholar
  4. Blasone R-S, Vrugt JA, Madsen H, Rosbjerg D, Robinson BA, Zyvoloski GA (2008) Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Adv Water Resour 31:630–648. doi: 10.1016/j.advwatres.2007.12.003 CrossRefGoogle Scholar
  5. Boyle DP, Gupta HV, Sorooshian S (2000) Toward improved calibration of hydrologic models: combining the strengths of manual and automatic methods. Water Resour Res 36:3663–3674. doi: 10.1029/2000wr900207 CrossRefGoogle Scholar
  6. Boyle DP, Gupta HV, Sorooshian S (2013) Multicriteria calibration of hydrologic models. in: calibration of watershed models. American Geophysical Union, p 185–196. doi: 10.1002/9781118665671.ch14
  7. Cheng CT, Ou CP, Chau KW (2002) Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration. J Hydrol 268:72–86. doi: 10.1016/S0022-1694(02)00122-1 CrossRefGoogle Scholar
  8. Dakhlaoui H, Bargaoui Z, Bárdossy A (2012) Toward a more efficient calibration schema for HBV rainfall–runoff model. J Hydrol 444–445:161–179. doi: 10.1016/j.jhydrol.2012.04.015 CrossRefGoogle Scholar
  9. Dariane AB, Javadianzadeh MM, James LD (2016) Developing an efficient auto-calibration algorithm for HEC-HMS program. Water Resour Manag 30:1923–1937. doi: 10.1007/s11269-016-1260-7 CrossRefGoogle Scholar
  10. De Vos NJ, Rientjes THM (2007) Multi-objective performance comparison of an artificial neural network and a conceptual rainfall—runoff model. Hydrol Sci J 52:397–413. doi: 10.1623/hysj.52.3.397 CrossRefGoogle Scholar
  11. de Vos NJ, Rientjes THM (2008) Multiobjective training of artificial neural networks for rainfall-runoff modeling. Water Resour Res 44, W08434. doi: 10.1029/2007wr006734 Google Scholar
  12. Deckers DEH, Booij M, Rientjes TM, Krol M (2010) Catchment variability and parameter estimation in multi-objective regionalisation of a rainfall–runoff model. Water Resour Manag 24:3961–3985. doi: 10.1007/s11269-010-9642-8 CrossRefGoogle Scholar
  13. Diks CH, Vrugt J (2010) Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch Environ Res Risk Assess 24:809–820. doi: 10.1007/s00477-010-0378-z CrossRefGoogle Scholar
  14. Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28:1015–1031. doi: 10.1029/91wr02985 CrossRefGoogle Scholar
  15. Duan QY, Gupta VK, Sorooshian S (1993) Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76:501–521. doi: 10.1007/bf00939380 CrossRefGoogle Scholar
  16. Dumedah G (2012) Formulation of the evolutionary-based data assimilation, and its implementation in hydrological forecasting. Water Resour Manag 26:3853–3870. doi: 10.1007/s11269-012-0107-0 CrossRefGoogle Scholar
  17. Dumedah G, Berg A, Wineberg M, Collier R (2010) Selecting model parameter sets from a trade-off surface generated from the Non-dominated sorting genetic algorithm-II. Water Resour Manag 24:4469–4489. doi: 10.1007/s11269-010-9668-y CrossRefGoogle Scholar
  18. Gill MK, Kaheil YH, Khalil A, McKee M, Bastidas L (2006) Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resour Res 42, W07417. doi: 10.1029/2005wr004528 CrossRefGoogle Scholar
  19. Guo J, Zhou J, Zou Q (2011) Study on multi-objective calibration of hydrological model and effect of objective functions combination on optimization results. Journal of Sichuan University (Engineering Science Edition) 43:58–63Google Scholar
  20. Guo J, Zhou J-Z, Zhou C, Wang G-Q, Zhang Y-C (2012) Multi-objective optimization for conceptual hydrological models. Shuikexue Jinzhan/Advances in Water Science 23:447–456Google Scholar
  21. Guo J, Zhou J, Zou Q, Liu Y, Song L (2013) A novel multi-objective shuffled complex differential evolution algorithm with application to hydrological model parameter optimization. Water Resour Manag 27:2923–2946. doi: 10.1007/s11269-013-0324-1 CrossRefGoogle Scholar
  22. Gupta HV, Bastidas LA, Sorooshian S, Shuttleworth WJ, Yang ZL (1999) Parameter estimation of a land surface scheme using multicriteria methods. Journal of Geophysical Research: Atmospheres 104:19491–19503. doi: 10.1029/1999jd900154 CrossRefGoogle Scholar
  23. Khu ST, Madsen H (2005) Multiobjective calibration with Pareto preference ordering: an application to rainfall-runoff model calibration. Water Resour Res 41, W03004. doi: 10.1029/2004wr003041 CrossRefGoogle Scholar
  24. Liu S-N, Gan H, Wei G-X (2010) Application of PSO algorithm to calibrate the Xin’anjiang hydrological model. Shuili Xuebao/Journal of Hydraulic Engineering 41:537–544Google Scholar
  25. Moore RJ (1985) The probability-distributed principle and runoff production at point and basin scales. Hydrol Sci J 30:273–297CrossRefGoogle Scholar
  26. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313. doi: 10.1093/comjnl/7.4.308 CrossRefGoogle Scholar
  27. Raje D, Mujumdar PP (2010) Reservoir performance under uncertainty in hydrologic impacts of climate change. Adv Water Resour 33:312–326. doi: 10.1016/j.advwatres.2009.12.008 CrossRefGoogle Scholar
  28. Rosa DJ, Clausen JC, Dietz ME (2015) Calibration and Verification of SWMM for low impact development. JAWRA J Am Water Resour AssocGoogle Scholar
  29. Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3:175–184. doi: 10.1093/comjnl/3.3.175 CrossRefGoogle Scholar
  30. Singh SK (2016) Long-term streamflow forecasting based on ensemble streamflow prediction technique: a case study in New Zealand. Water Resour Manag 30:2295–2309. doi: 10.1007/s11269-016-1289-7 CrossRefGoogle Scholar
  31. Song XM, Zhan CS, Xia J (2012) Integration of a statistical emulator approach with the SCE-UA method for parameter optimization of a hydrological model. Chin Sci Bull 57:3397–3403. doi: 10.1007/s11434-012-5305-x CrossRefGoogle Scholar
  32. Tang Y, Reed P, Wagener T (2006) How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration? Hydrol Earth Syst Sci Discuss 10:289–307CrossRefGoogle Scholar
  33. Tsou CS, Kao CH (2006) An electromagnetism-like meta-heuristic for multi-objective optimization. 2006 Ieee Congress on Evolutionary Computation, Vols 1–6Google Scholar
  34. Tsou CS, Kao CH (2008) Multi-objective inventory control using electromagnetism-like meta-heuristic. Int J Prod Res 46:3859–3874. doi: 10.1080/00207540601182278 CrossRefGoogle Scholar
  35. Vrugt JA, Gupta HV, Bastidas LA, Bouten W, Sorooshian S (2003a) Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour Res 39:1214. doi: 10.1029/2002wr001746 Google Scholar
  36. Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003b) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39:1201. doi: 10.1029/2002wr001642 Google Scholar
  37. Vrugt JA, Diks CGH, Gupta HV, Bouten W, Verstraten JM (2005) Improved treatment of uncertainty in hydrologic modeling: combining the strengths of global optimization and data assimilation. Water Resour Res 41, W01017. doi: 10.1029/2004wr003059 CrossRefGoogle Scholar
  38. Wagener T, Boyle DP, Lees MJ, Wheater HS, Gupta HV, Sorooshian S (2001) A framework for development and application of hydrological models. Hydrol Earth Syst Sci 5:13–26. doi: 10.5194/hess-5-13-2001 CrossRefGoogle Scholar
  39. Wu X-Y, Cheng C-T, Zhao M-Y (2004) Parameter calibration of Xinanjiang rainfall-runoff model by using parallel genetic algorithm. Shuili Xuebao/J Hydraul Eng:85Google Scholar
  40. Yang D, Ma G, Liu Q, Tao C, Guo X (2006) Runoff prediction by BP networks model based on PSO. Shuili Fadian Xuebao/Journal of Hydroelectric Engineering 25:65–68Google Scholar
  41. Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimization for hydrologic models. J Hydrol 204:83–97. doi: 10.1016/S0022-1694(97)00107-8 CrossRefGoogle Scholar
  42. Zhao R (1984) Watershed hydrological modelling water power press:109–118Google Scholar
  43. Zhou J, Ouyang S, Wang X, Ye L, Wang H (2014) Multi-objective parameter calibration and multi-attribute decision-making: an application to conceptual hydrological model calibration. Water Resour Manag 28:767–783. doi: 10.1007/s11269-014-0514-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Hydropower and Information EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Bureau of HydrologyChangjiang Water Resources CommissionWuhanPeople’s Republic of China

Personalised recommendations