Water Resources Management

, Volume 30, Issue 10, pp 3475–3492 | Cite as

Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction

  • Rajesh Kumar
  • Shaktiman Singh
  • Ramesh Kumar
  • Atar Singh
  • Anshuman Bhardwaj
  • Lydia Sam
  • Surjeet Singh Randhawa
  • Akhilesh Gupta
Article

Abstract

The reconstruction of glacio-hydrological records for the data deficient Himalayan catchments is needed in order to study the past and future water availability. The study provides outcomes of a glacio-hydrological model based on the degree-day approach. The model simulates the discharge and mass balance for glacierised Shaune Garang catchment. The degree-day factors for different land covers, used in the model, were estimated using daily stake measurements on Shaune Garang glacier and they were found to be varying between 2.6 ± 0.4 and 9.3 ± 0.3 mm °C−1day−1. The model is validated using observed discharge during ablation season of 2014 with coefficient of determination (R2) 0.90 and root mean square error (RMSE) 1.05 m3 sec−1. The model is used to simulate discharge from 1985 to 2008 and mass balance from 2001 to 2008. The model results show significant contribution of seasonal snow and ice melt in total discharge of the catchment, especially during summer. We observe the maximum discharge in July having maximum contribution from snow and ice melt. The annual melt season discharge shows following a decreasing trend in the simulation period. The reconstructed mass balance shows mass loss of 0.89 m we per year between 2001 and 2008 with slight mass gain during 2000/01 and 2004/05 hydrological years.

Keywords

Debris cover Degree-day factor Discharge Mass balance Snow and ice melt Water availability 

References

  1. Andermann C, Stephane B, Richard G (2011) Evaluation of precipitation data sets along the Himalayan front. Geochem Geophys Geosyst 12(7):Q07023. doi:10.1029/2011GC003513 CrossRefGoogle Scholar
  2. Archer DR, Fowler HJ (2004) Spatial and temporal variations in precipitation in the upper Indus basin, global teleconnections and hydrological implications. Hydrol Earth Syst Sci 8:47–61. doi:10.5194/hess-8-47-2004 CrossRefGoogle Scholar
  3. Arora M, Singh P, Goel NK, Singh RD (2006) Spatial distribution and seasonal variability of rainfall in a mountainous basin in the Himalayan region. Water Resour Manag 20(4):489–508. doi:10.1007/s11269-006-8773-4 CrossRefGoogle Scholar
  4. Arora M, Singh P, Goel NK, Singh RD (2008) Climate variability influences on hydrological responses of a large Himalayan basin. Water Resour Manag 22(10):1461–1475. doi:10.1007/s11269-007-9237-1 CrossRefGoogle Scholar
  5. Azam MF, Wagnon P, Ramanathan AL, Vincent C, Sharma P, Arnaud Y, Linda A, Pottakkal JG, Chevallier P, Singh VB, Berthier E (2012) From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India. J Glaciol 58(208):315–324. doi:10.3189/2012JoG11J123 CrossRefGoogle Scholar
  6. Azam MF, Wagnon P, Vincent C, Ramanathan AL, Favier V, Mandal A, Pottakkal JG (2014a) Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. Cryosphere 8:2195–2217. doi:10.5194/tc-8-2195-2014 CrossRefGoogle Scholar
  7. Azam MF, Wagnon P, Vincent C, Ramanathan AL, Linda A, Singh VB (2014b) Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969. Ann Glaciol 55(66):69–80. doi:10.3189/2014AoG66A104 CrossRefGoogle Scholar
  8. Bajracharya SR, Shrestha B (eds) (2011) The status of glaciers in the Hindu Kush-Himalayan region. International Centre for Integrated Mountain Development (ICIMOD), KathmanduGoogle Scholar
  9. Basistha A, Arya DS, Goel NK (2008) Spatial distribution of rainfall in Indian Himalayas—a case study of Uttarakhand region. Water Resour Manag 22(10):1325–1346. doi:10.1007/s11269-007-9228-2 CrossRefGoogle Scholar
  10. Bhutiyani MR, Kale VS, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim Change 85(1):159–177. doi:10.1007/s10584-006-9196-1 CrossRefGoogle Scholar
  11. Bhutiyani MR, Kale VS, Pawar NJ (2010) Climate change and the precipitation variations in the Northwestern Himalaya: 1866–2006. Int J Climatol 30(4):535–548. doi:10.1002/joc.1920 Google Scholar
  12. Bøggild CE, Reeh N, Oerter H (1994) Modelling ablation and mass-balance sensitivity to climate change of Storstrømmen, northeast Greenland. Global Planet Change 9(1–2):79–90. doi:10.1016/0921-8181(94)90009-4 CrossRefGoogle Scholar
  13. Bolch T, Kulkarni AV, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan glaciers. Science 336(6079):310–314. doi:10.1126/science.1215828 CrossRefGoogle Scholar
  14. Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res 115:F03019. doi:10.1029/2009jf001426 CrossRefGoogle Scholar
  15. Braithwaite RJ, Zhang Y (1999) Modelling changes in glacier mass balance that may occur as a result of climate changes. Geogr Ann Ser A Phys Geogr 81(4):489–496. doi:10.1111/1468-0459.00078 CrossRefGoogle Scholar
  16. Cea C, Cristóbal J, Pons X (2007) An improved methodology to map snow cover by means of Landsat and MODIS imagery. IEEE Int Geosci Remote Sens Symp (IGRASS) pp 4217–4220Google Scholar
  17. Dimri AP, Dash SK (2012) Wintertime climatic trends in the Western Himalaya. Clim Change 111(3–4):775–800. doi:10.1007/s10584-011-0201-y CrossRefGoogle Scholar
  18. Fujita K, Ageta Y (2000) Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass balance model. J Glaciol 46(153):244–252. doi:10.3189/172756500781832945 CrossRefGoogle Scholar
  19. Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere 7(4):1263–1286. doi:10.5194/tc-7-1263-2013 CrossRefGoogle Scholar
  20. Garg V, Jothiprakash V (2012) Sediment Yield Assessment of a Large Basin using PSIAC Approach in GIS Environment. Water Resour Manag 26(3):799–840. doi:10.1007/s11269-011-9945-4 CrossRefGoogle Scholar
  21. Gudmundsson L, Bremnes JB, Haugen JE, Engen-Skaugen T (2012) Technical note: downscaling RCM precipitation to the station scale using statistical transformations—a comparison of methods. Hydrol Earth Syst Sci 16:3383–3390. doi:10.5194/hess-16-3383-2012 CrossRefGoogle Scholar
  22. Hall DK, Riggs GA (2007) Accuracy assessment of the MODIS snow products. Hydrol Process 21(12):1534–1547. doi:10.1002/hyp.6715 CrossRefGoogle Scholar
  23. Herschy R (1993) The velocity-area method. Flow Meas Instrum 4(1):7–10. doi:10.1016/0955-5986(93)90004-3 CrossRefGoogle Scholar
  24. Heucke E (1999) A light portable steam-driven ice drill suitable for drilling holes in ice and firn. Geogr Ann Ser A Phys Geogr 81(4):603–609. doi:10.1111/1468-0459.00088 CrossRefGoogle Scholar
  25. Hock R (2003) Temperature index melt modelling in mountain areas. J Hydrol 282(1–4):104–115. doi:10.1016/S0022-1694(03)00257-9 CrossRefGoogle Scholar
  26. Immerzeel WW, Van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385. doi:10.1126/science.1183188 CrossRefGoogle Scholar
  27. Jain SK, Singh P, Saraf AK, Seth SM (2003) Estimation of sediment yield for a rain, snow and glacier fed river in the Western Himalayan region. Water Resour Manag 17(5):377–393. doi:10.1023/A:1025804419958 CrossRefGoogle Scholar
  28. Jain SK, Goswami A, Saraf AK (2009) Role of elevation and aspect in snow distribution in Western Himalaya. Water Resour Manag 23(1):71–83. doi:10.1007/s11269-008-9265-5 CrossRefGoogle Scholar
  29. Jain SK, Goswami A, Saraf AK (2010) Assessment of snowmelt runoff using remote sensing and effect of climate change on runoff. Water Resour Manag 24(9):1763–1777. doi:10.1007/s11269-009-9523-1 CrossRefGoogle Scholar
  30. Juen M, Mayer C, Lambrecht A, Han H, Liu S (2014) Impact of varying debris cover thickness on ablation: a case study for Koxkar Glacier in the Tien Shan. Cryosphere 8(2):377–386. doi:10.5194/tc-8-377-2014 CrossRefGoogle Scholar
  31. Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412):495–498. doi:10.1038/nature11324 CrossRefGoogle Scholar
  32. Kayastha RB, Ohata T, Ageta Y (1999) Application of mass balance model to a Himalayan glacier. J Glaciol 45:559–567Google Scholar
  33. Krakauer NY, Pradhanang SM, Lakhankar T, Jha AK (2013) Evaluating satellite products for precipitation estimation in mountain regions: a case study for Nepal. Remote Sens 5:4107–4123. doi:10.3390/rs5084107 CrossRefGoogle Scholar
  34. Lejeune Y, Bertrand JM, Wagnon P and Samuel M (2013) A physically based model of the year-round surface energy and mass balance of debris-covered glaciers. J Glaciol 59(214):327–344. doi:10.3189/2013JoG12J149
  35. Li H, Xu C-Y, Beldring S, Tallaksen LM, Jain SK (2015) Water resources under climate change in Himalayan basins. Water Resour Manag. doi:10.1007/s11269-015-1194-5 Google Scholar
  36. Liu X, Chen B (2000) Climatic warming in the Tibetan plateau during recent decades. Int J Climatol 20(14):1729–1742. doi:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y CrossRefGoogle Scholar
  37. Lutz AF, Immerzeel WW, Shrestha AB, Bierkens MFP (2014) Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation. Nat Clim Chang 4:587–592. doi:10.1038/nclimate2237 CrossRefGoogle Scholar
  38. Mayewski PA, Jeschke PA (1979) Himalayan and Trans-Himalayan glacier fluctuations since Ad 1812. Arct Alp Res 11(3):267–287CrossRefGoogle Scholar
  39. Mölg T, Maussion F, Yang W, Scherer D (2012) The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier. Cryosphere 6:1445–1461. doi:10.5194/tc-6-1445-2012 CrossRefGoogle Scholar
  40. Nicholson L, Benn DI (2006) Calculating ice melt beneath a debris layer using meteorological data. J Glaciol 52(178):463–470. doi:10.3189/172756506781828584 CrossRefGoogle Scholar
  41. Ohmura A (2001) Physical basis for the temperature-based melt index method. J Appl Meteorol 40(4):753–761. doi:10.1175/1520-0450)(2001)040<0753:PBFTTB>2.0.CO;2 CrossRefGoogle Scholar
  42. Ohmura A, Bauder A, Müller H, Kappenberger G (2007) Long term change of mass balance and the role of radiation. Ann Glaciol 46:367–374. doi:10.3189/172756407782871297 CrossRefGoogle Scholar
  43. Panday PK, Christopher AW, Frey KE, Brown ME (2014) Application and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approach. Hydrol Process 28(21):5337–5353. doi:10.1002/hyp.10005 CrossRefGoogle Scholar
  44. Pandey P, Venkataraman G (2013) Changes in the glaciers of Chandra-Bhaga basin, Himachal Himalaya, India, between 1980 and 2010 measured using remote sensing. Int J Remote Sens 34(15):5584–5597. doi:10.1080/01431161.2013.793464 CrossRefGoogle Scholar
  45. Pradhananga NS, Kayastha RB, Bhattarai BC, Adhikari TR, Pradhan SC, Devkota LP, Shrestha AB, Mool PK (2014) Estimation of discharge from Langtang River basin, Rasuwa, Nepal, using a glacio-hydrological model. Ann Glaciol 55(66):223–230. doi:10.3189/2014AoG66A123223 CrossRefGoogle Scholar
  46. Pratap B, Dobhal DP, Mehta M, Bhambri R (2015) Influence of debris cover and altitude on glacier surface melting: a case study on Dokriani Glacier, Central Himalaya, India. Ann Glaciol 56(70):9–16. doi:10.3189/2015AoG70A971
  47. Raina VK, Srivastava D, Singh RK, Sangewar CV (2008) Glacier regimen, fluctuation, hydrometry and mass transfer studies in the Himalayas. In: Raina VK, Srivastava D (eds) Glacier Atlas of India. Geological Society of India, Bangalore, pp 206–216Google Scholar
  48. Schild A (2008) The case of the Hindu Kush–Himalayas: ICIMOD’s position on climate change and mountain systems. Mt Res Dev 28(3/4). doi:10.1659/mrd.mp009
  49. Shea JM, Immerzeel WW, Wagnon P, Vincent C, Bajracharya S (2015) Modelling glacier change in the Everest region, Nepal Himalaya. Cryosphere 9(3–3):1105–1128. doi:10.5194/tc-9-1105-2015 CrossRefGoogle Scholar
  50. Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J Climate 12:2775–2767. doi:10.1175/1520-0442(1999)012%3C2775:MTTITH%3E2.0.CO;2 CrossRefGoogle Scholar
  51. Shrestha AB, Wake CP, Dibb JE, Mayewski PA (2000) Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. Int J Climatol 20(3):317–327. doi:10.1002/(SICI)1097-0088(20000315)20:3<317::AID-JOC476>3.0.CO;2-G CrossRefGoogle Scholar
  52. Singh P (2001) Hydrological modelling of snow and glacier covered basins. Proc Natl Acad Sci India A 71:195–222Google Scholar
  53. Singh P, Bengtsson L (2003) Effect of warmer climate on the depletion of snow covered area in the Satluj basin in the western Himalayan region. Hydrol Sci J 48(3):413–425. doi:10.1623/hysj.48.3.413.45280 CrossRefGoogle Scholar
  54. Singh P, Jain SK (2003) Modelling of streamflow and its components for a large Himalayan basin with predominant snowmelt yields. Hydrol Sci J 48(2):257–276. doi:10.1623/hysj.48.2.257.44693 CrossRefGoogle Scholar
  55. Singh P, Haritashya UK, Kumar N (2008) Modelling and estimation of different components of streamflow for Gangotri Glacier basin, Himalayas. Hydrol Sci J 53(2):309–322. doi:10.1623/hysj.53.2.309 CrossRefGoogle Scholar
  56. Singh S, Kumar R, Bhardwaj A, Sam L, Shekhar M, Singh A, Kumar R and Gupta A (2016) Changing climate and glacio-hydrology in Indian Himalayan Region: a review. Wiley Interdiscip Rev Clim Change 7(3):393–410. doi:10.1002/wcc.39
  57. Srivastava D, Kumar A, Verma A, Swaroop S (2014) Analysis of climate and melt-runoff in Dunagiri Glacier of Garhwal Himalaya (India). Water Resour Manag 28(10):3035–3055. doi:10.1007/s11269-014-0653-8 CrossRefGoogle Scholar
  58. Subramanya K (1994) Engineering hydrology, 2nd edn. Tata McGraw-Hill Education, New DelhiGoogle Scholar
  59. Thayyen RJ, Gergan JT (2010) Role of glaciers in watershed hydrology: a preliminary study of a ‘Himalayan catchment’. Cryosphere 4(1):115–128. doi:10.5194/tc-4-115-2010 CrossRefGoogle Scholar
  60. Tiwari PC, Joshi B (2012) environmental changes and sustainable development of water resources in the Himalayan headwaters of India. Water Resour Manag 26(4):883–907. doi:10.1007/s11269-011-9825-y CrossRefGoogle Scholar
  61. Vincent C, Al R, Wagnon P, Dobhal DP, Linda A, Berthier E, Sharma P, Arnaud Y, Azam MF, Jose PG, Gardelle J (2013) Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. Cryosphere 7(2):569–582. doi:10.5194/tc-7-569-2013 CrossRefGoogle Scholar
  62. Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalaya: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23(3):520–530. doi:10.1111/j.1523-1739.2009.01237.x CrossRefGoogle Scholar
  63. Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutom N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93(9):1401–1415. doi:10.1175/BAMS-D-11-00122.1 CrossRefGoogle Scholar
  64. Zhang G, Kang S, Fujita K, Huintjes E, Xu J, Yamazaki T, Haginoya S, Wei Y, Scherer D, Schneider C, Yao T (2013) Energy and mass balance of Zhadang glacier surface, central Tibetan Plateau. J Glaciol 59(213):137–148. doi:10.3189/2013JoG12J152

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Rajesh Kumar
    • 1
  • Shaktiman Singh
    • 1
  • Ramesh Kumar
    • 1
  • Atar Singh
    • 1
  • Anshuman Bhardwaj
    • 1
    • 2
  • Lydia Sam
    • 1
    • 3
  • Surjeet Singh Randhawa
    • 4
  • Akhilesh Gupta
    • 5
  1. 1.Department of Environmental Science, School of Basic Sciences & ResearchSharda UniversityGreater NoidaIndia
  2. 2.Department of Computer Science, Electrical and Space Engineering, Atmospheric Science GroupLuleå University of TechnologyKirunaSweden
  3. 3.Defence Terrain Research LaboratoryNew DelhiIndia
  4. 4.State Council for Science, Technology. & EnvironmentShimlaIndia
  5. 5.Department of Science & TechnologyNew DelhiIndia

Personalised recommendations