Water Resources Management

, Volume 30, Issue 7, pp 2261–2274 | Cite as

Effectiveness of Water Management in Europe in the 21st Century

  • Jadwiga R. Ziolkowska
  • Bozydar Ziolkowski


Research on water scarcity and water management in Europe has accelerated significantly in the past two decades, mainly as a result of growing water demand for agricultural, industrial, and municipal uses. Most research studies in the field evaluate water use and management by means of static indicators that depict a one-time value for a given time period (e.g., one year). This paper suggests a dynamic indicator measuring product (here: water) generational dematerialization. The indicator presents a comprehensive approach for evaluating water resources and water management strategies, as it represents a function of both resource use changes and population changes occurring simultaneously and over time. To accentuate the benefits of this dynamic indicator over static indicators as well as its practical applicability for decision-making support, the paper evaluates water management in Europe based on the total water use between 2001 and 2013. The results show that water management estimated cumulatively for the analyzed European countries has been effective for the last 13 years, though significant regional variations have been found. The research and the dynamic water generational dematerialization indicator can be helpful with addressing regional and national water deficit problems and designing sustainable water management strategies in the mid- and long-run.


Water management Product generational dematerialization Sustainability indicators Sustainable development European Union (EU) 



The research was supported by the National Science Foundation (Oklahoma EPSCoR Program IIA-1301789). The authors appreciate valuable comments of the Editor and anonymous reviewers.


  1. Agathokleous A, Xanthos S, Christodoulou SE (2015) Real-time monitoring of water distribution networks. Water Util J 10:15–24Google Scholar
  2. Ausubel JH (1995) Technical progress and climatic change. Energy Policy 23:411–416CrossRefGoogle Scholar
  3. Barlow PM, Ahlfeld DP, Dickerman DC (2003) Conjunctive-management models for sustained yield of stream-aquifer systems. J Water Resour Plan Manag 129:35–48CrossRefGoogle Scholar
  4. Bierter W (2000) Dematerialisierung und Beschäftigung im Rahmen einer pluralen Ökonomie. Querschnittsgruppe Arbeit und Ökologie. WZB Discussion PaperGoogle Scholar
  5. Bithas K, Kalimeris P (2013) Re-estimating the decoupling effect: is there an actual transition towards a less energy-intensive economy? Energy 51:78–84CrossRefGoogle Scholar
  6. Bixio D, Thoeye C, De Koning J, Joksimovic D, Savic D, Wintgens T, Melin T (2006) Wastewater reuse in Europe. Desalination 187:89–101. doi: 10.1016/j.desal.2005.04.070 CrossRefGoogle Scholar
  7. Carpintero O (2003) Los costes ambientales del sector servicios y la nueva economía: entre la desmaterialización y el “efecto rebote” (The environmental costs of service sector and the new economy: between the dematerialization and rebound effect). Econ Ind 59–76Google Scholar
  8. Chong HY, Lam WH (2013) Ocean renewable energy in Malaysia: the potential of the straits of Malacca. Renew Sust Energ Rev 23:169–178. doi: 10.1016/j.rser.2013.02.021 CrossRefGoogle Scholar
  9. Chouli E, Aftias E, Deutsch JC (2007) Applying storm water management in Greek cities: learning from the European experience. Desalination 210:61–68. doi: 10.1016/j.desal.2006.05.033 CrossRefGoogle Scholar
  10. Cleveland CJ, Ruth M (1998) Indicators of dematerialization and the materials intensity of use. J Ind Ecol 2:15–50. doi: 10.1162/jiec.1998.2.3.15 CrossRefGoogle Scholar
  11. COM(2012) 673 final (2012) A Blueprint to Safeguard Europe’s Water Resources, Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. Accessed 25 Feb 2016
  12. Daly HE (1977) Steady-state economics. Freeman, San FranciscoGoogle Scholar
  13. De Bruyn SM (2002) Dematerialization and rematerialization as two recurring phenomena of industrial ecology. In: Ayres RU, Ayres LW (eds) A handbook of industrial ecology. Edward Elgar, Cheltenham, pp 209–222Google Scholar
  14. Ekins P (2000) Economic growth and environmental sustainability: the prospects for green growth. Routledge, New YorkGoogle Scholar
  15. European Environment Agency (2014) Water abstraction. Accessed 21 Oct 2014
  16. Eurostat (2011) Key figures on Europe. Publications Office of the European Union, LuxembourgGoogle Scholar
  17. Eurostat (2014b) Total fresh water abstraction. Accessed 18 May 2014
  18. Eurostat (2014c) Water statistics. Accessed 21 Oct 2014
  19. Eurostat (2015) Annual freshwater abstraction by source and sector [env_wat_abs]. Accessed 22 Sep 2015
  20. Flörke M, Kynast E, Bärlund I et al (2013) Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Glob Environ Chang 23:144–156. doi: 10.1016/j.gloenvcha.2012.10.018 CrossRefGoogle Scholar
  21. Gleick PH (1998) The world’s water 1998–1999: the biennial report on freshwater resources. Island Press, Washington D.CGoogle Scholar
  22. Grübler A (1998) Technology and global change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. Hall WA, Butcher WS (1968) Optimal timing of irrigation. J Irrig Drain E-ASCE 94:267–275Google Scholar
  24. Hochstrat R, Wintgens T (2003) AQUAREC, Report on Milestone M3.I, Draft of wastewater reuse potential estimation, Interim reportGoogle Scholar
  25. Høyer KG, Næss P (2001) The ecological traces of growth: economic growth, liberalization, increased consumption—and sustainable urban development? J Environ Policy Plann 3:177–192. doi: 10.1002/jepp.84 CrossRefGoogle Scholar
  26. Huang CL, Deng W (2008) Establishment and application of indicators system for sustainability assessment of agricultural water resources use. Chemical Industry Press, BeijingGoogle Scholar
  27. Huang CL, Vause J, Ma HW, Yu CP (2012) Using material/substance flow analysis to support sustainable development assessment: a literature review and outlook. Resour Conserv Recycl 68:104–116. doi: 10.1016/j.resconrec.2012.08.012 CrossRefGoogle Scholar
  28. Kander A (2005) Baumol’s disease and dematerialization of the economy. Ecol Econ 55:119–130. doi: 10.1016/j.ecolecon.2004.10.008 CrossRefGoogle Scholar
  29. Kestemont B, Kerkhove M (2010) Material flow accounting of an Indian village. Biomass Bioenergy 34:1175–1182. doi: 10.1016/j.biombioe.2010.03.008 CrossRefGoogle Scholar
  30. Khan IA (1982) A model for managing irrigated Agriculture1. J Am Water Resour Assoc 18:81–87. doi: 10.1111/j.1752-1688.1982.tb04531.x CrossRefGoogle Scholar
  31. Maji CC, Heady EO (1978) Intertemporal allocation of irrigation water in the Mayurakshi Project (India): an application of chance-constrained linear programing. Water Resour Res 14:190–196. doi: 10.1029/WR014i002p00190 CrossRefGoogle Scholar
  32. Mariolakos I (2007) Water resources management in the framework of sustainable development. Desalination 213:147–151. doi: 10.1016/j.desal.2006.05.062 CrossRefGoogle Scholar
  33. Meadows DH, Meadows DL, Randers J, Beherens J, Lii WW (1972) The limits to growth: a report for the club of Rome’s project on the predicament of mankind. Mankind Universe Books, New YorkGoogle Scholar
  34. Mont OK (2002) Clarifying the concept of product–service system. J Clean Prod 10:237–245. doi: 10.1016/S0959-6526(01)00039-7 CrossRefGoogle Scholar
  35. Moroglu M, Yazgan MS (2008) Implementation of EU water framework directive in Turkey. Desalination 226:271–278. doi: 10.1016/j.desal.2007.01.245 CrossRefGoogle Scholar
  36. Nápoles-Rivera F, Serna-González M, El-Halwagi MM, Ponce-Ortega JM (2013) Sustainable water management for macroscopic systems. J Clean Prod 47:102–117. doi: 10.1016/j.jclepro.2013.01.038 CrossRefGoogle Scholar
  37. Narasimhan TN (2008) Water, law, science. J Hydrol 349:125–138. doi: 10.1016/j.jhydrol.2007.10.030 CrossRefGoogle Scholar
  38. Nieswand GH, Granstrom ML (1971) A chance-constrained approach to the conjunctive use of surface waters and groundwaters. Water Resour Res 7:1425–1436. doi: 10.1029/WR007i006p01425 CrossRefGoogle Scholar
  39. Núñez M, Oliver-Solà J, Rieradevall J, Gabarrell X (2009) Water management in integrated service systems: accounting for water flows in urban areas. Water Resour Manag 24:1583–1604. doi: 10.1007/s11269-009-9515-1 CrossRefGoogle Scholar
  40. Peralta R, Cantiller R, Terry J (1995) Optimal large-scale conjunctive water-use planning: case study. J Water Resour Plann Manag 121:471–478. doi: 10.1061/(ASCE)0733-9496(1995)121:6(471) CrossRefGoogle Scholar
  41. Plepys A (2002) The grey side of ICT. Environ Impact Assess Rev 22:509–523. doi: 10.1016/S0195-9255(02)00025-2 CrossRefGoogle Scholar
  42. Proag V (2006) Water resources management in Mauritius. Eur Water 15(16):45–57Google Scholar
  43. Recalde MY, Guzowski C, Zilio MI (2014) Are modern economies following a sustainable energy consumption path? Energy Sustain Dev 19:151–161. doi: 10.1016/j.esd.2014.01.005 CrossRefGoogle Scholar
  44. Reisch LA (2001) The internet and sustainable consumption: perspectives on a Janus face. J Consum Policy 24:251–286. doi: 10.1023/A:1013977509623 CrossRefGoogle Scholar
  45. Rejani R, Jha MK, Panda SN (2008) Simulation-optimization modelling for sustainable groundwater management in a coastal basin of Orissa, India. Water Resour Manag 23:235–263. doi: 10.1007/s11269-008-9273-5 CrossRefGoogle Scholar
  46. Rosegrant MW, Cai X, Cline SA (2002) World water and food to 2025. International Food Policy Research Institute, WashingtonGoogle Scholar
  47. Schmidt-Bleek F (2001) The story of Factor10 and MIPS. Factor 10 Institute, Carnoules/ProvenceGoogle Scholar
  48. Schütz H, Steurer A (2001) Economy-wide material flow accounts and derived indicators. A methodological guide. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  49. Schütz H, Welfens MJ (2000) Sustainable development by dematerialization in production and consumption: Strategy for the new environmental policy in Poland:results of the research project: ECOPOL: ecological economic policy - strategy for Poland in the 21st century. Wuppertal Institut für Klima, UmweltGoogle Scholar
  50. Shangguan Z, Shao M, Horton R, Lei T, Qin L, Ma J (2002) A model for regional optimal allocation of irrigation water resources under deficit irrigation and its applications. Agric Water Manag 52:139–154. doi: 10.1016/S0378-3774(01)00116-0 CrossRefGoogle Scholar
  51. Singh A (2012) An overview of the optimization modelling applications. J Hydrol 466–467:167–182. doi: 10.1016/j.jhydrol.2012.08.004 CrossRefGoogle Scholar
  52. Sonnenfeld DA (2000) Contradictions of ecological modernisation: pulp and paper manufacturing in south-east Asia. In: Mol APJ, Sonnenfeld DA (eds) Ecological modernisation around the world: critical perspectives and debates. Routledge, LondonGoogle Scholar
  53. Tapio P, Banister D, Luukkanen J, Vehmasa J, Willamo R (2007) Energy and transport in comparison: immaterialisation, dematerialisation and decarbonisation in the EU15 between 1970 and 2000. Energy Policy 35:433–451. doi: 10.1016/j.enpol.2005.11.031 CrossRefGoogle Scholar
  54. Thomas P, Howlett PG, Piantadosi J (2010) Investigating the optimal management of the helps road drain urban stormwater harvesting system within the city of Salisbury. Eur Water 29:11–19Google Scholar
  55. Tu Q, Lu M, Yang YJ, Scott D (2016) Water consumption estimates of the biodiesel process in the US. Clean Techn Environ Policy 18:507–516. doi: 10.1007/s10098-015-1032-8 CrossRefGoogle Scholar
  56. UN (2010) United Nations Millennium Development Goals, Report 2010. UN, New YorkGoogle Scholar
  57. UNESCO-WWAP (2006) Water, a shared responsibility. Berghahn Books, BarcelonaGoogle Scholar
  58. UN-Water (2014) Set of key indicators for the water sector. UNGoogle Scholar
  59. Wackernagel M, Rees WE (1996) Our ecological footprint: reducing human impact on the earth. New Society Publishers, PhiladelphiaGoogle Scholar
  60. WATERinCORE (2010) Sustainable water management through common responsibility enhancement in Mediterranean River Basins. Water Management Common List of Indicators & Database. 1G-MED08-515Google Scholar
  61. Williams N (2010) World gears up to water shortages. Curr Biol 20:R383–R384. doi: 10.1016/j.cub.2010.04.028 CrossRefGoogle Scholar
  62. Xi X, Poh KL (2013) Using system dynamics for sustainable water resources management in Singapore. Procedia Comput Sci 16:157–166. doi: 10.1016/j.procs.2013.01.017 CrossRefGoogle Scholar
  63. Ziolkowska J, Ziolkowski B (2010) Generational dematerialisation of energy in the world economy: evaluation approach for sustainable management policy. J Environ Assess Policy Manag 12:291–309. doi: 10.1142/S1464333210003656 CrossRefGoogle Scholar
  64. Ziolkowska JR, Ziolkowski B (2011) Product generational dematerialization indicator: a case of crude oil in the global economy. Energy 36:5925–5934. doi: 10.1016/ CrossRefGoogle Scholar
  65. Ziolkowska JR, Ziolkowski B (2015) Energy efficiency in the transport sector in the EU-27: a dynamic dematerialization analysis. Energy Econ 51:21–30. doi: 10.1016/j.eneco.2015.06.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Geography and Environmental SustainabilityThe University of OklahomaNormanUSA
  2. 2.Department of Entrepreneurship, Management and Eco-innovativenessIgnacy Łukasiewicz Rzeszów University of TechnologyRzeszówPoland

Personalised recommendations