Water Resources Management

, Volume 29, Issue 1, pp 181–196 | Cite as

Groundwater Spatial Dynamics and Endogenous Well Location

  • Pamela Giselle KaticEmail author


Groundwater economic models have refined optimal extraction rules while lagging behind in the study of optimal spatial policies. This paper develops a theoretical model to estimate welfare gains from optimal groundwater management when the choice variable set is expanded to include well location decisions as well as optimal groundwater extraction paths. Our theoretical results show that if there is spatial heterogeneity in groundwater, the welfare gains from optimal location of wells are substantial even if extraction rates are unregulated. Furthermore, second-best economically defined spacing regulations may possibly have better efficiency results (and lower implementation costs) than first-best uniform taxes or quotas. An application of the model to a real-world aquifer shows the importance of including well location decisions in spatially differentiated groundwater models and the need for (1) robust estimates of the gains from optimal management and; (2) spatially explicit regulations.


Groundwater Optimal location Welfare 



I am grateful to the Environmental Protection and Sustainable Development of the Guarani Aquifer System Project for the hydrological and economic data provided on the Concordia-Salto pilot project and to attendees at the Spanish-Portuguese Association of Natural Resources and Environmental Economics and the Sustainable Resource Use and Economic Dynamics conferences for their feedback.

Supplementary material

11269_2014_834_MOESM1_ESM.doc (230 kb)
ESM 1 (DOC 230 kb)
11269_2014_834_MOESM2_ESM.doc (96 kb)
ESM 2 (DOC 96.5 kb)
11269_2014_834_MOESM3_ESM.doc (24 kb)
ESM 3 (DOC 24.5 kb)
11269_2014_834_MOESM4_ESM.doc (128 kb)
ESM 4 (DOC 127 kb)


  1. Andre FJ (2009) Intertemporal and spatial location of disposal facilities. Span Econ Rev 11(1):23–49CrossRefGoogle Scholar
  2. Athanassoglou S, Sheriff G, Siegfried T, Huh W (2011) Optimal mechanisms for heterogeneous multi-cell aquifers. Environ Resour Econ. doi: 10.1007/s10640-011-9528-0 Google Scholar
  3. Barbazza C (2006) Acuifero Guarani. Analisis economico del reuso del agua termal en actividades productivas: Salto -Uruguay (Guarani Aquifer. Economic analysis of thermal water reuse in productive activities: Salto-Uruguay), Project for the environmental protection and sustainable development of the Guarani Aquifer System. The World Bank, MontevideoGoogle Scholar
  4. Bockstael NE (1996) Modeling economics and ecology: the importance of a spatial perspective. Am J Agr Econ 78(5):1168–1180CrossRefGoogle Scholar
  5. Bredehoeft JD, Young RA (1970) The temporal allocation of groundwater: a simulation approach. Water Resour Res 6(1):3–21CrossRefGoogle Scholar
  6. Brill TC, Burness HS (1994) Planning versus competitive rates of groundwater pumping. Water Resour Res 30(6):1873–1880CrossRefGoogle Scholar
  7. Brouwer R, Hofkes M (2008) Integrated hydroeconomic modeling: approaches, key issues and future research directions. Ecol Econ 66:16–22CrossRefGoogle Scholar
  8. Brown G, Deacon R (1972) Economic optimization of a single-cell aquifer. Water Resour Res 8(3):557–564CrossRefGoogle Scholar
  9. Brozovic N, Sunding DL, Zilberman D (2006) Optimal management of groundwater over space and time. In: Goetz RU, Berga D (eds) Frontiers in Water Resource Economics. Springer, New York, pp 109–136CrossRefGoogle Scholar
  10. Brozovic N, Sunding DL, Zilberman D (2010) On the spatial nature of the groundwater pumping externality. Resour Energy Econ 32(2):154–164CrossRefGoogle Scholar
  11. Burchi S (1999) National regulations for groundwater: options, issues and best practices. In: Salman SMA (ed) Groundwater: legal and policy perspectives. Proceedings of a World Bank seminar. The World Bank, Washington D.C., pp 55–67Google Scholar
  12. Burt OR (1967) Temporal allocation of groundwater. Water Resour Res 3(1):45–56CrossRefGoogle Scholar
  13. Burt OR (1970) Groundwater storage control under institutional restrictions. Water Resour Res 6(6):1540–1548CrossRefGoogle Scholar
  14. Castagnino G (2008) ESE- Reuso efluente termal. Proyecto Piloto Salto-Concordia (ESE – Reuse of thermal discharges. Pilot Project Concordia-Salto), Project for the environmental protection and sustainable development of the Guarani Aquifer System. The World Bank, MontevideoGoogle Scholar
  15. Chakraborty U, Hochman E, Zilberman D (1995) A spatial model of optimal water conveyance. J Environ Econ Manag 29(1):25–41CrossRefGoogle Scholar
  16. Charlesworth D, Sangam H, Assadi A (2008) Modelo numerico hidrogeologico area piloto Concordia-Salto (Hydrogeologic numerical model for the Concordia-Salto pilot area). Project for the environmental protection and sustainable development of the Guarani Aquifer System. The World Bank, MontevideoGoogle Scholar
  17. Dixon LS (1989) Models of groundwater extraction with an examination of agricultural water use in Kern County, California. PhD Dissertation, University of California, Berkeley.Google Scholar
  18. Gaudet G, Moreaux M, Salant SW (2001) Intertemporal depletion of resource sites by spatially distributed users. Am Econ Rev 91(4):1149–1159CrossRefGoogle Scholar
  19. Gisser M (1983) Groundwater: focusing on the real issue. J Polit Econ 91(6):1001–1027CrossRefGoogle Scholar
  20. Goetz RU, Zilberman D (2000) The dynamics of spatial pollution: the case of phosphorus runoff from agricultural land. J Econ Dyn Control 24(1):143–163CrossRefGoogle Scholar
  21. Haab TC, Hicks RL (1997) Accounting for choice set endogeneity in random utility models of recreation demand. J Environ Econ Manag 34(2):127–147CrossRefGoogle Scholar
  22. Hauber AB, Parsons GR (2000) The effect of nesting structure specification on welfare estimation in a random utility model of recreation demand: an application to the demand for recreational fishing. Am J Agr Econ 82(3):501–514CrossRefGoogle Scholar
  23. Heinz I, Pulido-Velazquez M, Lund JR, Andreu J (2007) Hydro-economic modeling in river basin management: implications and applications for the European water framework directive. Water Resour Manag 21:1103–1125. doi: 10.1007/s11269-006-9101-8 CrossRefGoogle Scholar
  24. Hsiao C, Chang L (2002) Dynamic optimal groundwater management with inclusion of fixed costs. J Water Resour Pl 128(1):57–65CrossRefGoogle Scholar
  25. Kaoru Y, Smith VK, Long Liu J (1995) Using random utility models to estimate the recreational value of estuarine resources. Am J Agr Econ 77(1):141–151CrossRefGoogle Scholar
  26. Katic P, Grafton RQ (2011) Optimal groundwater extraction under uncertainty: resilience versus economic payoffs. J Hydrol 406:215–224. doi: 10.1016/j.jhydrol.2011.06.016 CrossRefGoogle Scholar
  27. Katic P, Grafton RQ (2012) Economic and spatial modelling of groundwater extraction. Hydrogeol J 20(5):831–834. doi: 10.1007/s10040-011-0817-z CrossRefGoogle Scholar
  28. Knapp KC, Schwabe KC (2008) Spatial dynamics of water and nitrogen management in irrigated agriculture. Am J Agr Econ 90(2):524–539CrossRefGoogle Scholar
  29. Kolstad C (1994) Hotelling rents in hotelling space: product differentiation in exhaustible resource markets. J Environ Econ Manag 26(2):163–180CrossRefGoogle Scholar
  30. Koundouri P (2004) Potential for groundwater management: Gisser-Sanchez effect reconsidered. Water Resour Res. doi: 10.1029/2003WR002164 Google Scholar
  31. McKinney DC, Lin M (1994) Genetic algorithm solution of groundwater management models. Water Resour Res 30(6):1897–1906CrossRefGoogle Scholar
  32. Morel-Seytoux HJ, Daly CJ (1975) A discrete kernel generator for stream-aquifer studies. Water Resour Res 11(2):253–260CrossRefGoogle Scholar
  33. Negri DH (1989) The common property aquifer as a differential game. Water Resour Res 25:9–15CrossRefGoogle Scholar
  34. Nel J, Xu Y, Batelaan O, Brendonck L (2009) Benefit and implementation of groundwater protection zoning in South Africa. Water Resour Manag 23:2895–2911. doi: 10.1007/s11269-009-9415-4 CrossRefGoogle Scholar
  35. Parker DC (2007) Revealing “space” in spatial externalities: edge-effect externalities and spatial incentives. J Environ Econ Manag 54(1):84–99CrossRefGoogle Scholar
  36. Provencher B, Burt OR (1993) The externalities associated with the common property exploitation of groundwater. J Environ Econ Manag 24:139–158CrossRefGoogle Scholar
  37. Qureshi ME, Qureshi SE, Bajrcharya K, Kirby M (2008) Integrated biophysical and economic modelling framework to assess impacts of alternative groundwater management options. Water Resour Manag 22:321–341. doi: 10.1007/s11269-007-9164-1 CrossRefGoogle Scholar
  38. Rubio S, Casino B (2003) Strategic behavior and efficiency in the common property extraction of groundwater. Environ Resour Econ 26(1):73–87CrossRefGoogle Scholar
  39. Saak AE, Peterson JM (2007) Groundwater use under incomplete information. J Environ Econ Manag 54(2):214–228CrossRefGoogle Scholar
  40. Scrogin D, Boyle K, Parsons G, Plantinga AJ (2004) Effects of regulations on expected catch, expected harvest, and site choice of recreational anglers. Am J Agr Econ 86(4):963–974CrossRefGoogle Scholar
  41. Smith MD (2005) State dependence and heterogeneity in fishing location choice. J Environ Econ Manag 50(2):319–340CrossRefGoogle Scholar
  42. Smith MD, Sanchirico JN, Wilen JE (2009) The economics of spatial-dynamic processes: applications to renewable resources. J Environ Econ Manag 57(1):104–121CrossRefGoogle Scholar
  43. Steward DR, Peterson JM, Yang X, Bulatewicz T, Herrera-Rodriguez M, Mao D, Hendricks N (2009) Groundwater economics: an object-oriented foundation for integrated studies of irrigated agricultural systems. Water Resour Res 45:W05430. doi: 10.1029/2008WR007149 Google Scholar
  44. Terrell BL, Johnson PN, Segarra E (2002) Ogallala aquifer depletion: economic impact on the Texas High Plains. Water Policy 4(1):33–46CrossRefGoogle Scholar
  45. The World Bank (2010) Deep wells and prudence: towards pragmatic action for addressing groundwater overexploitation in India. The World Bank, Washington D.C.Google Scholar
  46. Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 2(5):519–524CrossRefGoogle Scholar
  47. Tsur Y, Graham-Tomasi T (1991) The buffer value of groundwater with stochastic surface water supplies. J Environ Econ Manag 21(3):201–224CrossRefGoogle Scholar
  48. Wang M, Zheng C (1998) Groundwater management optimisation using genetic algorithms and simulated annealing: formulation and comparison. J Am Water Resour As 34(3):519–530CrossRefGoogle Scholar
  49. Zektser IS, Everett LG (2004) Groundwater resources of the world and their use. IHP-VI Series on Groundwater No. 6. UNESCO, ParisGoogle Scholar
  50. The World Bank (2006) The Guarani Aquifer Initiative for Transboundary Groundwater Management. The GW MATE Case Profile Collection no. 9. The World Bank, Washington D.C.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.International Water Management InstituteAccraGhana

Personalised recommendations